
A Three-Part View on Solid Web Forms

Ieben Smessaert
Student number: 01804149

Supervisors: Prof. dr. ir. Ruben Verborgh, Dr. ir. Ruben Taelman
Counsellors: Patrick Hochstenbach, Prof. dr. Pieter Colpaert

Master's dissertation submitted in order to obtain the academic degree of
Master of Science in de informatica

Academic year 2022-2023

https://smessaert.be/
https://smessaert.be/
https://ruben.verborgh.org/
https://ruben.verborgh.org/
https://rubenworks.net/
https://rubenworks.net/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://pietercolpaert.be/
https://pietercolpaert.be/

Preface
This PDF version of the thesis was generated from the original HTML version at

https://thesis.smessie.com. Some functions might not be available in the PDF version due
to limitations of the conversion from HTML to PDF.

https://thesis.smessie.com/
https://thesis.smessie.com/

Samenvatting
We gebruiken allemaal wel eens een webformulier, dat is omdat je deelneemt aan een

enquête, of omdat je een of andere aanvraag moet invullen. Wanneer iemand gegevens
invoert in een webformulier, doet hij dat m.b.v. een app ontwikkeld voor dat specifieke
doel. Wanneer iemand een soortgelijk formulier nodig heeft, zal hij een nieuwe app vanaf
nul moeten ontwikkelen, zonder de mogelijkheid om van die bestaande app te beginnen
en die aan te passen. Bovendien zullen de gegevens worden opgeslagen op de app’s
server, en de gebruiker zal er niet meer bij kunnen of ze ergens anders kunnen opslaan.

Solid is een nieuw webdecentralisatie-initiatief dat gebruikers controle wil geven over
hun gegevens. Deze thesis probeert deze problemen aan te pakken door een driedelige
kijk op Solid Web forms te onderzoeken. Door webforms te decentraliseren en te ontkop‐
pelen wordt de definitie van de form gescheiden van de app, en worden de gegevens zelf,
inclusief de beschrijving, gedecentraliseerd opgeslagen. Hiertoe wordt een architectuur
voorgesteld met de Solid Web Forms opgesplitst in drie delen: weergave, validatie en re‐
denering. Door een beschrijving te hebben los van de app en een redeneergedeelte dat
beschrijft wat er met de gegevens moet gebeuren, wordt decentralisatie bereikt. Meerdere
apps werden geïmplementeerd, elk verschillende aspecten van deze architectuur tonend.

Een reasoner app werd gemaakt die toont hoe redeneren kan gebeuren in de browser
en vanop afstand m.b.v. een HTTP reasoner server. Daarnaast wordt onderzocht hoe er
op een abstraherende manier kan worden geredeneerd, wat gemakkelijk wisselen tussen
verschillende reasoners toelaat dankzij de voorgestelde uniforme reasoner interface.
Een to-do app werd ontwikkeld om te tonen hoe een gegevensbron kan worden vertaald.
Dit laat zien hoe de gegevens kunnen worden losgekoppeld van de app door schema
alignment te gebruiken om ze te vertalen naar het vocabulaire dat de app begrijpt.
De implementatie van een FormGenerator app toont hoe een RDF beschrijving kan wor‐
den gedefinieerd m.b.v. de driedelige architectuur. Met de app kan men op declaratieve
wijze beschrijven welke elementen de form bevat en wat er moet gebeuren bij indiening.
Dit maakt decentralisatie mogelijk, omdat de beschrijving kan worden opgeslagen op een
andere server, en de policies die beschrijven wat er met de ingevulde gegevens moet
gebeuren, kunnen bepalen dat ze worden opgeslagen op een andere server.
De implementatie van de FormRenderer laat zien hoe schema alignment werkt in een
meer algemeen proof-of-concept met formulieren. Bovendien wordt getoond hoe de in de
beschrijving gedefinieerde policies kunnen worden uitgevoerd als footprint tasks.
Een geïmplementeerde FormCli app toont hoe de beschrijving kan worden gerenderd in
een andere omgeving. Samen met de FormRenderer toont dit hoe het weergavegedeelte
onafhankelijk is van de omgeving, omdat dezelfde beschrijving kan worden weergegeven
in een tekstgebaseerde terminal, terwijl bij de FormRenderer in een GUI m.b.v. HTML.

Samen met een evaluatie van de gebruikerservaring van de FormGenerator en
FormRenderer toont deze thesis aan dat de driedelige architectuur een werkbare oplos‐
sing is voor de bovengenoemde problemen. We zullen echter zien dat er nog enkele
uitdagingen overblijven, die een uitgangspunt vormen voor toekomstig onderzoek.

Summary
We all use a kind of web form once in a while, that is because you take part in a survey,

or maybe because you have to fill in some kind of request. When a user enters data in a
web form, it does so by using an application that is developed for that specific purpose.
When someone needs a similar form, he will have to develop a new application from
scratch, without the possibility to start from that existing one and adapt it to his needs.
Furthermore, the data will almost always be stored on the application’s server, and the
user will not be able to access it again or choose to store it somewhere else.

Solid is a new web decentralization initiative that aims to give users control over their
data. This thesis attempts to address these problems by investigating a three-part view on
Solid web forms. By decentralizing and decoupling web forms, the definition of how the
form should look is separated from the app, and the data itself, inclusively the form de‐
scription, is stored in a decentralized way. To do this, an architecture is proposed where
the Solid Web Forms are split into three parts: display, validation, and reasoning. By hav‐
ing a form description that is detached from the app and a reasoning part that describes
what to do with the submitted data, decentralization is achieved. Multiple proof-of-
concept apps were implemented all showing different aspects of this architecture.

A reasoner app was built to show how reasoning can be done in the browser and re‐
motely with the use of an HTTP reasoner server. Additionally, this investigates how rea‐
soning can be done abstractly, allowing one to easily switch between different reasoners
thanks to the uniform reasoner interface proposed.
A to-do app was built to show how a data resource can be translated into a different lan‐
guage. This shows how the data can be decoupled from the application by using schema
alignment to translate the data into the vocabulary that the application understands.
A FormGenerator app was implemented to demonstrate how to define a form description
in RDF using the three-part architecture. The app allows one to describe what elements
are contained in the form and what should happen in case of submission, both in a
declarative way. This allows for decentralization, since the form description can be stored
on a different server than the application, and the policies that describe what to do with
the submitted data can specify that it be stored on a different server than the application.
The implementation of the FormRenderer shows how schema alignment can be done in a
more general proof of concept with forms. Additionally, it shows how the policies defined
in the form description can be executed as footprint tasks.
A FormCli app was built to show how the form description can be rendered in a different
viewing environment. Together with the FormRenderer, this shows that the display part is
independent of the viewing environment as the same form description can be rendered in
a text-based terminal while the FormRenderer renders it in a GUI using HTML.

Together with a user-experience evaluation of the FormGenerator and FormRenderer,
this thesis shows that the three-part architecture is a viable solution to the problems men‐
tioned above. However, we will see that some challenges remain, providing a starting
point for future research.

A Three-Part View on Solid Web Forms

ABSTRACT
Web forms are used all the time, but they lack basic, yet important, features such as

controllability, reusability, and decentralization. With traditional centralized forms, we can‐
not decide where to store the submied data, and we cannot reuse existing forms. To solve
this, we need to describe the form and its actions, i.e. what to do with the submied data, in‐
dependently of the app, so that we can edit and copy this description. We created a three-
part view on Solid Web Forms by decoupling a form description into the display, validation,
and reasoning parts. In this paper, we demonstrate how such a declarative form description
can be created and used without making assumptions about the viewing environment or
data storage. Using a declaratively wrien form description, we can render a form with our
favorite renderer application in any viewing environment and perform the actions described
in the form description using reasoning performed through a uniform reasoner interface.
is decoupling allows us to reuse forms and store data in a decentralized way. By enabling
users to modify form descriptions, we reinstate their authority over the data. e first re‐
sults of this paper are promising. Further research will have to show how further abstrac‐
tions may push the need for Linked Data knowledge even further aside.

1. INTRODUCTION
Current web forms are meant to be used

against one endpoint (1), oen used for one
(web) display (2), with one particular work‐
flow in mind (3), without a means to send and
receive the data in another way (4). We all use
a kind of web form once in a while, that is be‐
cause you take part in a survey, or maybe be‐
cause you have to fill in some kind of request.
When one need a similar form to one that al‐
ready exists, they will have to develop a new
application from scratch, without the possibil‐
ity to start from that existing one and adapt it
to their needs. Furthermore, the data will al‐
most always be stored on the server of the ser‐
vice provider, and the user will not be able to
access it again or choose to store it somewhere
else (footprint).

To tackle this problem, this thesis intro‐
duces a solution by looking at Solid web forms
as a whole of 3 separate parts: display, valida‐
tion, and reasoning. With the use of Solid [1]
and Linked Data, several solutions have al‐
ready been proposed, but none of them con‐
sider web forms as a whole of 3 separate parts,
except for the Design Issue by Berners-Lee [2]

and the blog post on Shaping Linked Data
apps by Verborgh [3]. In addition, to fully de‐
couple the description from the application,
schema alignment is required to map the de‐
scription to the vocabulary of the application.
is makes it possible to use the same descrip‐
tion for different applications, even if they use
different vocabularies. is, along with the ex‐
ecution of the footprint tasks, is done using
reasoning.
erefore, we propose an architecture that

splits the Solid web forms into 3 parts and im‐
plement proof-of-concept applications to show
how this can be done in practice. In this paper,
the following three research questions are ex‐
amined:
• How can machines be controlled in a declar‐

ative way to create forms for producing
RDF in multiple viewing environments
(such as the web and text-based via a com‐
mand line)?

• How can machines be controlled in a declar‐
ative way to perform schema alignment
and footprint tasks by the use of reason‐
ing?

• How can an abstraction be made to run

Ieben Smessaert , Prof. dr. ir. Ruben Verborgh , Dr. ir. Ruben Taelman ,
Patrick Hochstenbach , Prof. dr. Pieter Colpaert

https://solidproject.org/
https://solidproject.org/
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://smessaert.be/
https://smessaert.be/
https://ruben.verborgh.org/
https://ruben.verborgh.org/
https://rubenworks.net/
https://rubenworks.net/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://pietercolpaert.be/
https://pietercolpaert.be/

reasoning in the browser or remotely?

In Section 2, the high-level architecture of
the proposed three-part view is discussed aer
which each research question is answered in
Section 3, Section 4, and Section 5. Next, an
evaluation is done with the help of a user-
experience evaluation in Section 6. Finally, in
Section 7, the conclusion is given.

2. HIGH-LEVEL ARCHITECTURE

A common way how web applications store
their data is by using only one fixed structure.
Because of that, it is not possible to use the
data with another application that uses a diff‐
fferent structure. is is even the case for many
Solid apps that assume the data is stored in a
fixed location in the pod with only one vocab‐
ulary. is paper proposes a solution to this
problem by using a three-part view on Solid
web forms. is shi from a single structure to
a three-part view is shown schematically in
Figure 1. e le part is the current situation
where the data is stored in a single structure
and the application is built on top of this
structure. e right part is the goal of this re‐
search where the data is divided into three
parts: a form (for display), shape (for valida‐
tion), and footprint (for reasoning) part.
e high-level architecture can also be

viewed from a different angle. In traditional
centralized web applications, different users
interact with the same centralized web server
using different interfaces. ese web interfaces
are wrien for that server and only work for

that single web server. Additionally, the data is
stored on the server of the application, outside
the user’s control. e Solid protocol [4] pro‐
vides a standardized interface, but still many
apps are being built with assumptions about
the data that is stored in the pod. e app is
designed for one specific use case and the data
is most of the time stored in a specific way.

is paper pushes this decentralized archi‐
tecture a step further with the introduction of
a declarative Solid app that makes no assump‐
tions about the interface and app itself. e
previous problem of needing a separate app
for each use case is solved by describing the
user interface in a declarative way: the form
description resource. A schematic overview of
the architecture is shown in Figure 2. e app
still needs to understand the ontology of the
form description. is problem is overcome
with the use of schema alignment tasks trans‐
lating it into an ontology the app understands.
e third input as shown in Figure 2, the N3
conversion rules resource, is used by the ren‐
derer app to perform this mapping. Data
stored in the provided data resource can be
used to prefill the form. Next, reasoning is also
used to apply footprint tasks: the execution of
policies when a certain action occurs, such as
submission. A remote or local reasoner can be
used to perform these tasks. Lastly, no as‐
sumptions should be made about the app itself

Figure 1: Transition from the traditional
single structure where all the data is defined
using a single vocabulary, to a three-part view,
consisting of a form (for display), shape (for
validation), and footprint (for reasoning) part.

Figure 2:

declaratively
generated app

S S

RDF RDF

renderer app

Data resource

N3 conversion
rules resource

Form
description
resource

WEB CLI

remote
reasoner

local
reasoner

uses

Users interact with a dynamically
generated app built by a form renderer using
the 3 inputs displayed on the right. is
generic renderer app can build for multiple
viewing environments without making
assumptions about the interface and app
itself. It uses a reasoner to apply the schema
alignment and footprint tasks. e user can
use the generated app to interact with one or
more Solid pods.

https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol

or the interface used to interact with this app.
is declaratively generated app built by the
renderer app can then be used to interact with
one or more Solid pods. is concept of having
a display part that is unrelated to the viewing
environment is discussed in Section 3.

3. MULTIPLE VIEWING ENVIRONMENTS

e form description will provide the de‐
coupling of the three parts: display, validation,
and reasoning. e display part is the part that
is responsible for rendering the form to the
user. ere already exist ontologies that can be
used for this purpose, such as SHACL [5],
Solid-UI [6], and RDF-Form [7].

By declaratively describing the form in RDF,
it should be possible to render the form in any
environment. Web forms are typically HTML,
while RDF represents the semantics of the
form, not how you represent it in HTML. To
prove that the display part is unrelated to the
viewing environment, two proof-of-concept
applications are implemented that can render
the same form description in multiple viewing
environments. e first app is the
FormRenderer which renders the form de‐
scription in a web browser using HTML. A
screenshot of this app is shown in Figure 3.
e second app is the FormCli which renders
the form description in a text-based command-
line interface. e architecture and implemen‐

tation of these apps are very similar to each
other. e main difference is that the FormCli
app does not have a graphical user interface
and uses a text-based terminal instead.
e implementation of these apps provides

us with proof that the display part is unrelated
to the viewing environment as the same form
description can be rendered with the two apps.
Everything about how to render the form can
be derived from the RDF form description,
making it declarative. By making form de‐
scriptions portable and not tight to one ren‐
dering environment or one rendering logic,
machines can be controlled to create forms for
producing RDF in multiple viewing environ‐
ments.

4. SCHEMA ALIGNMENT AND FOOTPRINT
TASKS

Unfortunately, the move to decentralization
and decoupling comes with its own challenges.
Two main challenges need to be tackled before
this can be achieved. First, decoupling also
means that another app should be able to use
or generate the form description. e assump‐
tion can however not be made that all apps
will use the same ontology to describe similar
concepts. To achieve a real decoupled solution,
we need to be able to translate from one ontol‐
ogy to another. erefore, schema alignment
tasks are introduced, functioning as a mapping
to translate from one ontology to another on‐
tology understood by the app. is is imple‐
mented using reasoning by using Notation3
(N3) rules [8] that define how to translate one
piece of data to another. ese rules are col‐
lected in a N3 conversion rules resource. is
way, the form renderer can understand any
vocabulary that is passed to it as long as there
is a dictionary that maps it to the base vocabu‐
lary.

In addition to describing how the form
should look, the form description should also
declaratively describe what should happen in
certain events such as submission. erefore,
the form description is extended with policies.
e process of executing these policies is
called the footprint tasks and is the second
half of the reasoning part of the three-part
view. To describe policies, two languages are
needed: a rule language and a policy language

Figure 3: Screenshot of the implemented
FormRenderer.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/

describing what actually should happen when
a policy is executed. As rule language, N3 [8] is
used. is is the same language that is used to
describe the conversion rules in the schema
alignment tasks and their N3 rules do exactly
what is needed. To describe the policy, a basic
version of the FnO ontology [9] is used.

e FormGenerator app is implemented al‐
lowing one to declaratively define a form de‐
scription by using drag-and-drop to build a
form and leing them input the policy proper‐
ties such as the redirect URL or the details for
the HTTP request. A screenshot of this
FormGenerator app is shown in Figure 4. A to-
do app is implemented providing a first use
case for the schema alignment tasks and al‐
lowing a simple introduction to the concept.
is app also demonstrates the need for poli‐
cies, as schema alignment tasks fall short in
the event of a to-do status toggle. If the app
vocabulary should only insert a triple on the
occurrence of an event, but the dataset vocab‐
ulary requires both an insert and a delete,
schema alignment tasks cannot properly sat‐
isfy this requirement because according to the
app vocabulary, there are no triples to delete,
i.e., there are no triples to use in the rule
premise. is is also fixed by using policies,
where the policy defines which triples should
be inserted and deleted in case of a toggle to-

do status event. Finally, the form renderer
apps are extended with these new schema
alignment and footprint tasks.

5. UNIFORM REASONER INTERFACE
e second challenge that was mentioned in

Section 4 is that no single use case is the same.
Some reasoning steps may be computationally
intensive, while others are not, but need to be
done fast without many dependencies. is
leads to the idea that we should be able to dy‐
namically change how we execute the reason‐
ing without a lot of work, based on the exact
use case at that moment. A uniform reasoner
interface is designed to abstract away the diff‐
fferences between the different reasoners, al‐
lowing one to easily switch between them.
Switching between reasoners can mean
switching between reasoning in the browser
or remotely, or it can mean switching between
reasoner implementations to improve perfor‐
mance.

First, the data and query parameters are
needed. e data parameter is used to pass
the data to the reasoner together with any in‐
ference rules that should be applied. e
query parameter is optional and defines the
paern of the data that should be returned by
the reasoner. When passed as a string, the data
should be formaed in the Notation3 syntax.
Furthermore, the interface is designed with ex‐
tensibility in mind by using a single object
that contains all the additional options. is
object can be extended by other reasoners, al‐
lowing them to add their options. By default,
the output type should be the same as the in‐
put type. However, by passing the
outputType option, the user can specify the
output type. is option must support at least
the string value, it should also support the
quads value, which will return the output as
an array of RDF/JS ads. When the query pa‐
rameter is le undefined, the user should have
the option to execute implicit queries. is is
expressed in the options object by the output
option by defining what to output with im‐
plicit queries. Last, the option blogic can be
defined to use blogic [10], used to support RDF
Surfaces [11].
e proposed interface is implemented in

Figure 4: Screenshot of the implemented
FormGenerator.

https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/

the client-side EYE-JS [12] reasoner package.
Furthermore, an eye-mock library [13] is im‐
plemented with the same interface allowing
one to execute the reasoning on a remote
server. Finally, a Reasoner app is implemented
to demonstrate the use of the interface and to
allow one to easily switch between the differ‐
ent reasoners. e user can use the toggle to
switch easily between the two implementa‐
tions to fit their needs. Under the hood, this is
done by just changing the import statement of
the reasoner package.

6. EVALUATION
e proposed architectures and implemen‐

tations are evaluated by doing a user study.
e user experience is evaluated by asking
participants to use the FormGenerator and
FormRenderer apps to create and fill out
forms. Users were provided with a scenario
explaining what they were supposed to do
with the app.
e feedback received from these users was

that the FormGenerator app was easy to use,
especially because of the drag-and-drop func‐
tionality. However, the feedback also showed
that bindings and other Linked Data concepts
still confuse users. is is still required knowl‐
edge to use the app, which should not be the
case. e users building a SHACL form noted
that the “min count” and “max count” for a
field were confusing to them because they did
not know what they meant. Overall, the feed‐
back on the FormGenerator app was positive
and 6 out of the 8 technically proficient users
were able to create the form without any is‐
sues besides the difficulties with the bindings.
e feedback that was received for the

FormRenderer app from all the 11 users, with
and without a technical background, was that
the app is straightforward to use, easy to use,
and clear. ey were all able to fill out the
form without any issues. Someone noticed
that when filling out a form described using
SHACL, they expected a multi-line text field to
be used for the review field instead of a single-
line text field. However, the SHACL vocabu‐
lary does not allow one to define a multi-line
text field. Furthermore, one person noted that
it was unclear what the Subject URI was for,

and even though for people without that
knowledge there is always at least one valid
suggestion that can be used, it can be confus‐
ing because they do not know what to choose.
Besides that, the users did not notice that the
app was using Solid and Linked Data behind
the scenes and this is exactly the goal of the
FormRenderer app. People were also unaware
that schema alignment tasks were being per‐
formed behind the scenes.

7. CONCLUSION
is paper demonstrates a three-part view

on Solid web forms. Our first 2 contributions,
the implementations of the FormRenderer and
FormCli prove that the display part is not tight
to one rendering environment. With our third
contribution, the FormGenerator, we show
how such declarative form descriptions can be
produced, answering the first research ques‐
tion. e user evaluation made clear the
SHACL ontology is not ideal for the display
part. It is now empirically shown that the
Solid-UI ontology is more natural for the dis‐
play part.

Furthermore, with our fourth contribution,
schema alignment and footprint tasks were
successfully introduced allowing one to use
different vocabularies than the app under‐
stands and allowing one to execute declara‐
tively defined policies on the occurrence of
events. is successfully answers the second
research question. Nonetheless, the results of
these applications show the need for further
research to further improve the perceived ac‐
cessibility issues regarding bindings in order
to make these technologies optimally available
to all people without expecting them to have
prior technical knowledge. Aer all, the user
evaluation showed that the FormGenerator
and FormRenderer apps are for different types
of people. Future research on how bindings
could be automatically suggested to the user
could be a solution to this problem.
Additionally, a standardized way of defining
policies would be interesting for future work.

Finally, our fih contribution, the uniform
reasoner interface, was introduced to allow
one to easily switch between different reason‐
ing implementations. With our sixth contribu‐

https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

tion, the implementation of the Reasoner app,
we show how this abstraction can be used to
run reasoning in the browser or remotely, an‐
swering the third and final research question.
As future work, it would be interesting to see
this interface implemented in other reasoning
libraries, especially in a library that imple‐
ments a different algorithm than the EYE rea‐
soner. An HTTP server version of this inter‐
face with the same parameters would also be
interesting for future work.

BIBLIOGRAPHY
T. Berners-Lee and others, “Solid.” 2022.
Accessed: Nov. 26, 2022. [Online]. Available:
hps://solidproject.org
T. Berners-Lee, “Linked Data Shapes, Forms
and Footprints - Design Issues.” Apr. 2019.
Accessed: Apr. 15, 2023. [Online]. Available:
hps://www.w3.org/DesignIssues
/Footprints.html
R. Verborgh, “Shaping Linked Data apps.” 2022.
Accessed: Dec. 01, 2022. [Online]. Available:
hps://ruben.verborgh.org/blog/2019/06/17
/shaping-linked-data-apps/
S. Capadisli, T. Berners-Lee, R. Verborgh, and
K. Kjernsmo, “Solid Protocol.” 2022. Accessed:
Mar. 29, 2023. [Online]. Available: hps://solid‐
project.org/TR/protocol

H. Knublauch and D. Kontokostas, “Shapes
Constraint Language (SHACL).” 2022.
Accessed: Nov. 28, 2022. [Online]. Available:
hps://www.w3.org/TR/shacl/
SolidOS, “Solid-UI.” 2022. Accessed: Nov. 28,
2022. [Online]. Available: hps://www.w3.org
/ns/ui#
D. Beeke, “RDF Form.” 2022. Accessed: Nov. 28,
2022. [Online]. Available: hps://rdf-
form.danielbeeke.nl
D. Arndt, W. Van Woensel, D. Tomaszuk, and
G. Kellogg, “Notation3.” 2022. Accessed: Nov.
26, 2022. [Online]. Available:
hps://w3c.github.io/N3/spec/
B. De Meester, T. Seymoens, A. Dimou, and R.
Verborgh, “Implementation-independent func‐
tion reuse,” Future Generation Computer
Systems, vol. 110, pp. 946–959, 2020.
P. Hayes, “BLOGIC. (ISWC 2009 Invited Talk).”
Oct. 2009. Accessed: May 12, 2023. [Online].
Available: hps://www.slideshare.net
/PatHayes/blogic-iswc-2009-invited-talk
P. Hochstenbach and J. De Roo, “RDF Surfaces
Primer.” 2023. Accessed: Apr. 06, 2023.
[Online]. Available: hps://w3c-cg.github.io
/rdfsurfaces/
W. Jesse and J. De Roo, “EYE JS.” 2022.
Accessed: Mar. 05, 2023. [Online]. Available:
hps://github.com/eyereasoner/eye-js
I. Smessaert, “eye-mock.” 2022. Accessed: Nov.
28, 2022. [Online]. Available:
hps://github.com/smessie/eye-mock

https://solidproject.org/
https://solidproject.org/
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock

Een driedelige kijk op Solid Web Forms

ABSTRACT
Webforms worden voortdurend gebruikt, toch missen ze elementaire, maar belang‐

rijke functies zoals controleerbaarheid, herbruikbaarheid en decentralisatie. Met traditionele
gecentraliseerde forms kunnen we niet beslissen waar we de ingevoerde gegevens opslaan,
en kunnen we bestaande forms niet hergebruiken. Om dit op te lossen moeten we de form
en zijn acties, dat wil zeggen wat er met de input moet gebeuren, onaankelijk van de app
beschrijven, zodat we deze kunnen bewerken en kopiëren. In deze paper geven we een
driedelige kijk op Solid Web Forms door de formbeschrijving te ontkoppelen in een
weergave-, validatie- en redeneergedeelte. In deze paper demonstreren we hoe zo'n
declaratieve beschrijving kan worden gemaakt en gebruikt zonder aannames te maken over
de weergaveomgeving of gegevensopslag. Met behulp van een declaratieve formbeschrijving
kunnen we een form renderen met onze favoriete renderapp in elke weergaveomgeving en
de beschreven acties uitvoeren met behulp van redenering (reasoning) via een uniforme rea‐
soner interface. Door deze ontkoppeling kunnen we forms hergebruiken en gegevens decen‐
traal opslaan. De gebruiker krijgt de mogelijkheid beschrijvingen te bewerken en krijgt zo
terug controle over zijn gegevens. De eerste resultaten van deze paper zijn veelbelovend.
Verder onderzoek zal moeten uitwijzen hoe verdere abstracties de behoee aan Linked
Data-kennis nog verder kunnen doen afnemen.

1. INTRODUCTIE
De huidige webforms zijn bedoeld om ge‐

bruikt te worden tegen één endpoint (1), ty‐
pisch voor één (web)weergave (2), met één
bepaalde workflow in gedachten (3), zonder
een middel om de gegevens op een andere
manier te verzenden en te ontvangen (4). We
gebruiken allemaal wel eens een soort web‐
form, dat is omdat je deelneemt aan een en‐
quête, of misschien omdat je een of andere
aanvraag moet invullen. Wanneer je een soort‐
gelijke form nodig hebt als een reeds
bestaande form, zal je een nieuwe app vanaf
nul moeten ontwikkelen, zonder de moge‐
lijkheid om van die bestaande form te be‐
ginnen en het aan jouw behoeen aan te
passen. Bovendien zal de input bijna altijd
worden opgeslagen op de server van de ser‐
viceprovider, en de gebruiker zal er niet meer
bij kunnen of ze ergens anders kunnen op‐
slaan (footprint).

Om dit probleem aan te pakken, wordt in
deze paper een oplossing voorgesteld door
Solid web forms te beschouwen als een geheel

van 3 afzonderlijke onderdelen: display, vali‐
dation, en reasoning. Met het gebruik van
Solid [1] en Linked Data zijn al verschillende
oplossingen voorgesteld, maar geen daarvan
beschouwt webforms als een geheel van 3 af‐
zonderlijke delen, behalve de Design Issue van
Berners-Lee [2] en de blogpost over Shaping
Linked Data apps van Verborgh [3]. Om de
beschrijving volledig los te koppelen van de
app, is bovendien schema alignment nodig om
de beschrijving te mappen naar het vocabu‐
laire van de app. Dit maakt het mogelijk om
dezelfde beschrijving te gebruiken voor ver‐
schillende apps, zelfs als deze verschillende
vocabulaires gebruiken. Dit gebeurt, samen
met de uitvoering van de footprint-taken, met
behulp van redenering.

Wij stellen een architectuur voor de op‐
splitsing van web forms voor in de drie delen
en passen deze architectuur toe op proof-of-
concept apps. In deze paper worden de vol‐
gende drie onderzoeksvragen onderzocht:
• Hoe kunnen machines op een declaratieve

manier worden aangestuurd om forms te
maken voor het produceren van RDF in

Ieben Smessaert , Prof. dr. ir. Ruben Verborgh , Dr. ir. Ruben Taelman ,
Patrick Hochstenbach , Prof. dr. Pieter Colpaert

https://solidproject.org/
https://solidproject.org/
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://smessaert.be/
https://smessaert.be/
https://ruben.verborgh.org/
https://ruben.verborgh.org/
https://rubenworks.net/
https://rubenworks.net/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://pietercolpaert.be/
https://pietercolpaert.be/

meerdere weergaveomgevingen (zoals
het web en tekstgebaseerd via een comman‐
doregel)?

• Hoe kunnen machines op declaratieve wijze
worden aangestuurd om schema align‐
ment en footprint taken uit te voeren
door gebruik te maken van redenering?

• Hoe kan een abstractie worden gemaakt
om te redeneren in de browser of op af‐
stand?

In Section 2 wordt de high-level architec‐
tuur van de voorgestelde driedeling besproken,
waarna elke onderzoeksvraag wordt beant‐
woord in Section 3, Section 4 en Section 5.
Vervolgens wordt een evaluatie uitgevoerd
met behulp van een gebruikerservaringsevalu‐
atie in Section 6. Ten sloe wordt in Section 7
de conclusie gegeven.

2. HIGH-LEVEL ARCHITECTUUR

Een gebruikelijke manier waarop webapps
hun gegevens opslaan is door slechts één vaste
structuur te gebruiken. Daardoor is het niet
mogelijk om de gegevens te gebruiken met een
andere app die een andere structuur gebruikt.
Dit is zelfs het geval voor veel Solid apps die
ervan uitgaan dat de gegevens worden opge‐
slagen op een vaste plaats in de pod met
slechts één vocabulaire. In deze paper wordt
deze enkelvoudige structuur vervangen door
een driedeling zoals aangegeven in Figure 1.
Het linker deel stelt de huidige situatie voor

waarbij de gegevens worden opgeslagen in een
enkele structuur en de app bovenop deze
structuur wordt gebouwd. Het rechterdeel
stelt het doel van dit onderzoek voor waarbij
de gegevens zijn opgedeeld in drie delen:
formulier- (voor weergave), vorm- (voor vali‐
datie) en footprintgedeelte (voor redenering).

De high-level architectuur kan ook vanuit
een andere hoek worden bekeken. In tradi‐
tionele gecentraliseerde webapps commu‐
niceren verschillende gebruikers met dezelfde
gecentraliseerde webserver via verschillende
interfaces. Deze webinterfaces zijn geschreven
voor die server en werken alleen voor die ene
webserver. Bovendien worden de gegevens
opgeslagen op de server van de app, buiten de
controle van de gebruiker. Het Solid-proto‐
col [4] biedt een gestandaardiseerde interface,
maar toch worden veel apps gebouwd met
aannames over de gegevens die in de pod wor‐
den opgeslagen. De app is ontworpen voor één
specifieke use case en de gegevens worden
meestal op een specifieke manier opgeslagen.

Deze paper duwt deze gedecentraliseerde
architectuur een stap verder met de introduc‐
tie van een declaratieve Solid app die geen
aannames maakt over de interface en de app
zelf. Het eerdere probleem dat voor elke use
case een aparte app nodig was, wordt opgelost
door de gebruikersinterface op een

Figure 1: Overgang van de traditionele
enkelvoudige structuur waarbij alle gegevens
worden gedefinieerd a.d.h.v. een enkel
vocabulaire, naar een driedelige kijk,
bestaande uit een formulier- (voor weergave),
vorm- (voor validatie) en footprintgedeelte
(voor redenering).

Figure 2:

declaratief
gegenereerde app

S S

RDF RDF

renderer app

Gegevensbron

N3 conversie-
regelsbron

Formulier-
beschrijvings-

bron

WEB CLI

externe
reasoner

lokale
reasoner

gebruikt

Men interageert met een dynamisch
gegenereerde app, gebouwd door een form
renderer, met behulp van de 3 inputs aan de
rechterkant. Deze generieke renderer app kan
voor meerdere weergaveomgevingen bouwen
zonder aannames te doen over de interface en
de app zelf. Het gebruikt een reasoner om de
schema alignment en footprint taken toe te
passen. De gebruiker kan de gegenereerde app
gebruiken voor interactie met een of meer
Solid pods.

https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol

declaratieve manier te beschrijven: de
formulier-beschrijvingsbron. Een schematisch
overzicht van de architectuur wordt getoond
in Figure 2. De app moet nog steeds de ontolo‐
gie van de beschrijving begrijpen. Dit pro‐
bleem wordt overwonnen met behulp van
schema alignment taken die het vertalen naar
een ontologie die de app begrijpt. De derde in‐
put zoals getoond in Figure 2, de N3 conver‐
sieregelsbron, wordt gebruikt door de renderer
app om deze mapping uit te voeren. Gegevens
opgeslagen in de opgegeven gegevensbron
kunnen worden gebruikt om het formulier
vooraf al in te vullen. Vervolgens wordt re‐
denering ook gebruikt om footprint taken toe
te passen: het uitvoeren van policies wanneer
een bepaalde actie plaatsvindt, zoals indienen.
Een externe of lokale reasoner kan worden ge‐
bruikt om deze taken uit te voeren. Ten sloe
mogen geen aannames worden gedaan over de
app zelf of de interface die wordt gebruikt
voor interactie met de app. Deze declaratief
gegenereerde app, gebouwd door de renderer
app, kan dan worden gebruikt voor interactie
met een of meer Solid pods. Dit concept van
een weergavegedeelte dat los staat van de kijk‐
omgeving wordt besproken in Section 3.

3. MEERDERE KIJKOMGEVINGEN

De formulierbeschrijving zorgt voor de
loskoppeling van de drie delen: weergave, vali‐

datie en redenering. Het weergavegedeelte is
het gedeelte dat instaat voor het weergeven
van de form. Hiervoor bestaan al ontologieën
die gebruikt kunnen worden, zoals SHACL [5],
Solid-UI [6], en RDF-Form [7].

Door de form declaratief te beschrijven in
RDF, moet het mogelijk zijn de form in elke
omgeving te renderen. Webforms zijn typisch
HTML, terwijl RDF de semantiek van de form
weergee, niet hoe je het in HTML weergee.
Om te bewijzen dat het weergave-gedeelte los
staat van de weergave-omgeving, zijn twee
proof-of-concept apps geïmplementeerd die
eenzelfde beschrijving in meerdere weergave-
omgevingen weergeven. De eerste app is de
FormRenderer die de form in een webbrowser
weergee met behulp van HTML. Een screen‐
shot van deze app staat in Figure 3. De tweede
app is de FormCli die de form weergee in een
tekstgebaseerde commandoregel-interface. De
architectuur en implementatie van deze apps
lijken erg op elkaar. Het belangrijkste verschil
is dat de FormCli app geen GUI hee, maar
een tekstgebaseerde terminal gebruikt.

De implementatie van deze apps levert het
bewijs dat het weergavegedeelte losstaat van
de weergaveomgeving, aangezien dezelfde
beschrijving kan worden weergegeven met
beide apps. De RDF-beschrijving bevat alles
over de weergave van de form, wat het
declaratief maakt. Door beschrijvingen over‐
draagbaar te maken en niet gebonden aan één
renderomgeving of één renderlogica, kunnen
machines worden aangestuurd om forms te
maken die RDF produceren in meerdere weer‐
gaveomgevingen.

4. SCHEMA ALIGNMENT EN FOOTPRINT
TAKEN

Helaas brengt de overgang naar decentrali‐
satie en ontkoppeling zijn eigen uitdagingen
met zich mee. Twee belangrijke uitdagingen
moeten worden aangepakt voordat dit kan
worden bereikt. Ten eerste betekent los‐
koppeling ook dat een andere app de beschrij‐
ving moet kunnen gebruiken of genereren. Er
kan echter niet van worden uitgegaan dat alle
apps dezelfde ontologie zullen gebruiken om
soortgelijke concepten te beschrijven. Om tot
een echte ontkoppeling te komen, moeten we
kunnen vertalen van de ene ontologie naar de

Figure 3: Screenshot van de
geïmplementeerde FormRenderer.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/

andere. Daarom worden schema alignment
taken geïntroduceerd, die functioneren als een
mapping om van de ene ontologie te vertalen
naar een andere ontologie die de app begrijpt.
Dit wordt geïmplementeerd door te redeneren
met behulp van Notation3 (N3) rules [8] die
bepalen hoe het ene gegeven moet worden
vertaald naar het andere. Deze regels worden
verzameld in een N3 conversieregelsbron. Op
deze manier kan de formrenderer elke taal be‐
grijpen dat hem wordt doorgegeven, zolang er
een mapping bestaat naar de basistaal.

Naast het beschrijven van hoe de form eruit
moet zien, moet de beschrijving ook
declaratief beschrijven wat er moet gebeuren
bij bepaalde gebeurtenissen zoals indiening.
Daarom wordt de beschrijving uitgebreid met
policies. Het proces van het uitvoeren van
deze policies wordt de footprint taken ge‐
noemd en vormt de tweede hel van het rede‐
neergedeelte van de driedelige kijk. Om poli‐
cies te beschrijven zijn twee talen nodig: een
regeltaal en een policy taal die beschrij wat
er eigenlijk moet gebeuren als een policy
wordt uitgevoerd. Als regeltaal wordt N3 [8]
gebruikt. Dit is dezelfde taal die wordt ge‐
bruikt om de conversieregels bij schema align‐
ment te beschrijven en hun N3 regels doen
precies wat nodig is. Om de policy te beschrij‐
ven wordt een basisversie van de FnO ontolo‐
gie [9] gebruikt.

De FormGenerator app is geïmplementeerd
waarmee men declaratief een beschrijving kan
definiëren door met drag-and-drop een form te
bouwen en de policy-eigenschappen zoals de
redirect URL of de details voor het HTTP-
verzoek in te voeren. Een screenshot van deze
FormGenerator app wordt getoond in Figure 4.
Er is een to-do app geïmplementeerd die een
eerste use case biedt voor de schema align‐
ment taken en een eenvoudige introductie tot
het concept mogelijk maakt. Deze app demon‐
streert ook de noodzaak van policies,
aangezien schema alignment taken tekort
schieten bij een to-do status toggle. Als de
app-vocabulaire alleen een triple moet invoe‐
gen bij een gebeurtenis, maar de dataset-
vocabulaire zowel een invoeging als een ver‐
wijdering vereist, kunnen schema alignment-
taken niet goed aan deze eis voldoen omdat er
volgens de app-vocabulaire geen triples zijn
om te verwijderen, dat wil zeggen er zijn geen
triples om te gebruiken in de regelpremisse.
Dit wordt ook opgelost door het gebruik van
policies, waarbij de policy bepaalt welke
triples moeten worden ingevoegd en verwij‐
derd in geval van het event. Ten sloe worden
de formrenderer apps uitgebreid met deze
nieuwe schema alignment en footprint taken.

5. UNIFORME REASONER INTERFACE
De tweede uitdaging vermeld in Section 4 is

dat geen enkele use case hetzelfde is. Sommige
redeneerstappen kunnen computationeel in‐
tensief zijn, terwijl andere dat niet zijn, maar
snel moeten worden uitgevoerd zonder veel
aankelijkheden. Dit leidt tot het idee dat we
zonder veel werk dynamisch de uitvoering van
de redenering willen aanpassen op basis van
de precieze use case op dat moment. Een uni‐
forme reasoner interface is ontworpen om de
verschillen tussen de reasoners weg te abstra‐
heren, wat gemakkelijk switchen toelaat. Dit
kan betekenen wisselen tussen redeneren in de
browser of op afstand, of wisselen tussen im‐
plementaties van reasoners om de prestaties te
verbeteren.

Eerst zijn de parameters data en query
nodig. De data parameter wordt gebruikt om
gegevens door te geven aan de reasoner samen
met eventuele toe te passen inferentieregels.

Figure 4: Screenshot van de
geïmplementeerde FormGenerator.

https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/

De query parameter is optioneel en definieert
het patroon van de door de reasoner terug te
geven gegevens. Wanneer de gegevens worden
doorgegeven als een string, moet dit in de
Notation3-syntax gebeuren. Verder is de inter‐
face ontworpen met het oog op uitbreid‐
baarheid, met behulp van een enkel object dat
alle extra opties bevat. Dit object kan worden
uitgebreid door andere reasoners, zodat zij
hun opties kunnen toevoegen. Standaard is het
output type hetzelfde als het input type. De
gebruiker kan echter het output type specifi‐
ceren met behulp van de outputType optie.
Deze optie moet minstens de waarde string
ondersteunen, maar kan ook de waarde
quads ondersteunen, die de output teruggee
als array van RDF/JS ads. Bij een
ongedefinieerde query parameter moet de ge‐
bruiker de optie hebben om impliciete queries
uit te voeren. Welke impliciete query wordt
gedefinieerd met de optie output. Tot slot
kan de optie blogic worden gedefinieerd om
blogic [10] te gebruiken, om RDF Surfaces [11]
te ondersteunen.

De voorgestelde interface is geïmple‐
menteerd in de client-side EYE-JS [12] package.
Verder wordt een eye-mock bibliotheek [13]
geïmplementeerd met dezelfde interface die de
redenering uitvoert op een externe server.
Tensloe wordt een Reasoner app geïmple‐
menteerd om het gebruik van de interface te
demonstreren en om gemakkelijk te kunnen
wisselen tussen de verschillende reasoners.
Met behulp van een toggle kan de gebruiker
naargelang zijn behoeen schakelen tussen de
twee implementaties. Achter de schermen
gebeurt dit door het import statement van de
reasoner package aan te passen.

6. EVALUATIE
De voorgestelde architecturen en implemen‐

taties worden geëvalueerd door middel van
een gebruikersonderzoek. De gebruikerserva‐
ring wordt geëvalueerd door deelnemers te
vragen de FormGenerator en FormRenderer
apps te gebruiken om forms te maken en in te
vullen. Ze kregen een scenario voorgelegd
waarin werd uitgelegd wat ze met de app
moesten doen.

De feedback van deze gebruikers was dat de

FormGenerator app gemakkelijk te gebruiken
was, vooral door de drag-and-drop functionali‐
teit. Uit de feedback bleek echter ook dat bin‐
dings en andere Linked Data concepten ge‐
bruikers nog steeds in verwarring brengen. Dit
is nog steeds vereiste kennis om de app te ge‐
bruiken, wat niet het geval zou moeten zijn.
Zij die een SHACL-formulier maakten, merk‐
ten op dat de “min count” en “max count” voor
een veld verwarrend waren omdat zij niet wis‐
ten wat die betekenden. In het algemeen was
de feedback over de FormGenerator app posi‐
tief en konden 6 van de 8 technisch onderlegde
gebruikers het formulier maken zonder proble‐
men, naast de problemen met de bindings.

De feedback die voor de FormRenderer app
werd ontvangen van alle 11 gebruikers, met en
zonder technische achtergrond, was dat de app
rechoe rechtaan, gemakkelijk te gebruiken en
duidelijk is. Ze konden allemaal zonder proble‐
men de form invullen. Iemand merkte op dat
hij bij het invullen van een SHACL-gebaseerde
form verwache dat voor het beoordelingsveld
een meerregelig tekstveld zou moeten worden
gebruikt in plaats van een eenregelig tekstveld.
De SHACL ontologie voorziet deze mogelijk‐
heid echter niet. Verder merkte één persoon
op dat het onduidelijk was waarvoor de
Subject URI diende, en hoewel er altijd min‐
stens één geldige suggestie is die kan worden
gebruikt, kan het verwarrend zijn omdat ze
niet weten wat ze moeten kiezen. Daarnaast
merkten de gebruikers niet dat de app achter
de schermen Solid en Linked Data gebruikte,
en dat is precies het doel van de FormRenderer
app. Mensen hadden ook niet door dat schema
alignment taken werden uitgevoerd.

7. CONCLUSIE
Deze paper demonstreert een driedelige kijk

op Solid web forms. Onze eerste 2 contributies,
de FormRenderer en FormCli implementaties,
bewijzen dat het weergavegedeelte niet gebon‐
den is aan één renderomgeving. Met de derde
contributie, de FormGenerator, laten we zien
hoe dergelijke declaratieve beschrijvingen
kunnen worden geproduceerd, wat de eerste
onderzoeksvraag beantwoordt. De gebruikers‐
evaluatie maakte duidelijk dat de SHACL-
ontologie niet ideaal is voor het weergave‐

https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

gedeelte. Empirisch blijkt nu dat de Solid-UI
ontologie natuurlijker is voor dit deel.

Verder werden met onze vierde contributie
schema alignment en footprint taken met suc‐
ces geïntroduceerd waardoor men andere vo‐
cabulaires kan gebruiken dan de app begrijpt
en waardoor men declaratief gedefinieerde
policies kan uitvoeren bij het voorkomen van
events. Hiermee is de tweede onderzoeksvraag
met succes beantwoord. Nieemin tonen de
resultaten van deze apps de noodzaak naar
verder onderzoek om de waargenomen proble‐
men met betrekking tot bindings verder te ver‐
beteren, teneinde deze technologieën optimaal
beschikbaar te maken voor alle mensen zonder
te verwachten dat zij over voorafgaande tech‐
nische kennis beschikken. Uit de gebruikers‐
evaluatie bleek immers dat de FormGenerator
en FormRenderer voor verschillende soorten
mensen bestemd zijn. Toekomstig onderzoek
naar hoe bindings automatisch kunnen wor‐
den voorgesteld, zou een oplossing voor dit
probleem kunnen zijn. Daarnaast zou een ge‐
standaardiseerde definitie van policies interes‐
sant zijn voor toekomstig werk.

Tot slot werd onze vijfde contributie, de uni‐
forme reasoner interface, geïntroduceerd om
gemakkelijk te kunnen wisselen tussen rea‐
soning implementaties. Met onze zesde con‐
tributie, de Reasoner app, laten we zien hoe
deze abstractie kan worden gebruikt om re‐
deneringen in de browser of op afstand uit te
voeren, waarmee de laatste onderzoeksvraag
wordt beantwoord. Als toekomstig werk zou
het interessant zijn deze interface te imple‐
menteren in andere reasoning bibliotheken,
vooral in een bibliotheek die een ander algo‐
ritme implementeert dan EYE. Een HTTP-
serverversie van deze interface met dezelfde
parameters zou ook interessant zijn voor
toekomstig werk.

BIBLIOGRAFIE
T. Berners-Lee and others, “Solid.” 2022.
Accessed: Nov. 26, 2022. [Online]. Available:
hps://solidproject.org
T. Berners-Lee, “Linked Data Shapes, Forms
and Footprints - Design Issues.” Apr. 2019.
Accessed: Apr. 15, 2023. [Online]. Available:
hps://www.w3.org/DesignIssues
/Footprints.html
R. Verborgh, “Shaping Linked Data apps.” 2022.
Accessed: Dec. 01, 2022. [Online]. Available:
hps://ruben.verborgh.org/blog/2019/06/17
/shaping-linked-data-apps/
S. Capadisli, T. Berners-Lee, R. Verborgh, and
K. Kjernsmo, “Solid Protocol.” 2022. Accessed:
Mar. 29, 2023. [Online]. Available: hps://solid‐
project.org/TR/protocol
H. Knublauch and D. Kontokostas, “Shapes
Constraint Language (SHACL).” 2022.
Accessed: Nov. 28, 2022. [Online]. Available:
hps://www.w3.org/TR/shacl/
SolidOS, “Solid-UI.” 2022. Accessed: Nov. 28,
2022. [Online]. Available: hps://www.w3.org
/ns/ui#
D. Beeke, “RDF Form.” 2022. Accessed: Nov. 28,
2022. [Online]. Available: hps://rdf-
form.danielbeeke.nl
D. Arndt, W. Van Woensel, D. Tomaszuk, and
G. Kellogg, “Notation3.” 2022. Accessed: Nov.
26, 2022. [Online]. Available:
hps://w3c.github.io/N3/spec/
B. De Meester, T. Seymoens, A. Dimou, and R.
Verborgh, “Implementation-independent func‐
tion reuse,” Future Generation Computer
Systems, vol. 110, pp. 946–959, 2020.
P. Hayes, “BLOGIC. (ISWC 2009 Invited Talk).”
Oct. 2009. Accessed: May 12, 2023. [Online].
Available: hps://www.slideshare.net
/PatHayes/blogic-iswc-2009-invited-talk
P. Hochstenbach and J. De Roo, “RDF Surfaces
Primer.” 2023. Accessed: Apr. 06, 2023.
[Online]. Available: hps://w3c-cg.github.io
/rdfsurfaces/
W. Jesse and J. De Roo, “EYE JS.” 2022.
Accessed: Mar. 05, 2023. [Online]. Available:
hps://github.com/eyereasoner/eye-js
I. Smessaert, “eye-mock.” 2022. Accessed: Nov.
28, 2022. [Online]. Available:
hps://github.com/smessie/eye-mock

https://solidproject.org/
https://solidproject.org/
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock

Acknowledgments
First, I would like to thank my promotors Ruben Verborgh and Ruben Taelman and my

counselors Pieter Colpaert and Patrick Hochstenbach for their guidance and support
throughout this thesis. Thank you for letting me work on this very interesting topic. I espe‐
cially want to thank Patrick for all his help, insights, constructive feedback, and the many
meetings we had throughout the year. I also want to thank the other people in the lab for
the chats in the office, and Jan-Pieter for rubber ducking and working together in the offi‐
ffice.

Thanks to the people from Zeus WPI, other friends and my family for participating in the
user experience evaluation and giving me useful feedback. Thanks for listening to all my
stories about my thesis, Solid, and Linked Data.

I thank Robbe for providing the ScholarMarkdownThesis template that I used to write
this thesis, and for helping me fix the problems I encountered while using it.

Next, I would like to thank my parents for all the opportunities they have given me, for
the endless support, and for letting me complete this five-year journey through university.
Thanks to my dad for proofreading the user experience scenarios.

Last but not least, I want to say thanks to all those who took the time to read the final
part of my journey through university.

https://github.com/Robbe7730/ScholarMarkdownThesis
https://github.com/Robbe7730/ScholarMarkdownThesis

Permission for Usage
The author gives permission to make this master’s thesis available for consultation and

to copy parts of this master’s thesis for personal use. Every other use is subject to copy‐
right terms, in particular with regard to the obligation to explicitly state the source when
quoting results from this master’s thesis.

Ieben Smessaert, 25/05/2023

Table of Contents
1 Introduction
2 Related Work

2.1 Ontologies
2.1.1 XForms 2.0
2.1.2 SHACL
2.1.3 Solid-UI
2.1.4 RDF-Form
2.1.5 Hydra

2.2 RDForms
2.3 Validation

2.3.1 Shape-Validator-Component
2.3.2 Rdf-Validate-Shacl
2.3.3 Shacl-Engine

3 Technical Introduction
3.1 Linked Data
3.2 RDF
3.3 SPARQL
3.4 Solid
3.5 Notation3

3.5.1 N3 Patch
3.6 Reasoner Implementations

3.6.1 EYE
3.6.2 EYE-JS

3.7 Comunica
3.8 Ember-Solid
3.9 The Function Ontology

3.9.1 Orchestrator for a Decentralized Web Network
4 High-Level Architecture
5 Multiple Viewing Environments

5.1 Architecture
5.2 Implementation

5.2.1 Form Renderer
5.2.2 Form Cli

5.3 Discussion
6 Schema Alignment and Footprint Tasks

6.1 Architecture
6.1.1 To-Do List Example
6.1.2 Form Generator
6.1.3 Form Renderer

6.2 Approach
6.2.1 To-Do List Example
6.2.2 Forms Flow

6.3 Implementation
6.3.1 To-Do App With Solid
6.3.2 Form Generator
6.3.3 Form Renderer

6.4 Evaluation
6.4.1 Form Generator
6.4.2 Form Renderer

6.5 Discussion
7 Uniform Reasoner Interface

7.1 Architecture
7.2 Implementation

7.2.1 Remote EYE Execution
7.2.2 EYE-JS
7.2.3 Reasoner App

7.3 Discussion
8 Conclusion
Appendices

A User Experience Scenarios
A.1 Scenario 1: The Form Generator
A.2 Scenario 2: The Form Renderer

B Schema Alignment Example
B.1 Form Description in SHACL
B.2 N3 Rules to Map SHACL to Solid-UI
B.3 Resulting Solid-UI Form Description

List of Figures
Figure 1: A shape can have associated forms so people can easily view and edit

data, and footprints for determining how new data should be stored [3].
Figure 2: Transition from the traditional single structure where all the data is de‐

fined using a single vocabulary, to a three-part view of data, consisting of a
form (for display), shape (for validation), and footprint (for reasoning) part.

Figure 3: Users interact with the same traditional centralized Web server through
different interfaces that are written for that server and work only for that Web
server.

Figure 4: Users interact with a Solid application designed for a specific use case
using data from one or more pods by making assumptions about the stored
data.

Figure 5: Users interact with a dynamically generated application built by a form
renderer application using the declarative form description, an optional data
resource, and an optional resource with N3 conversion rules as input. This
generic renderer application can build for multiple viewing environments
without making assumptions about the interface and app itself. The renderer
uses a reasoner to apply the schema alignment and footprint tasks. The user
can use the generated application to interact with one or more Solid pods.

Figure 6: The user first creates a form description using the FormGenerator. Any
renderer application, such as the FormRenderer or FormCli, can then be
used to render the form for the user to fill out. The user can provide a re‐
source with pre-existing data to fill in the form, and a resource with conver‐
sion rules to apply the schema alignment tasks to the form description in
case the form description is not written in the same ontology as the renderer
application. The completed form can then be saved to the user’s Solid pod
by executing the policies on submission.

Figure 7: Screenshot of the implemented FormRenderer application.
Figure 8: Screenshot of the implemented FormCli application.
Figure 9: Users interact with the to-do application by providing a URL to a

dataset resource and optionally a set of N3 conversion rules and a set of N3
inverted conversion rules that translate the vocabulary of the dataset re‐
source into the vocabulary of the to-do application and vice versa. The to-do
application updates the dataset resource using N3 Patch Requests.

Figure 10: Screenshot of the implemented Todo App with Solid.
Figure 11: Screenshot of the implemented FormGenerator application.

List of Listings
Listing 1: Simple example of SELECT SPARQL query that selects the height of

Alice.
Listing 2: Example of a N3 Patch body.
Listing 3: Example of a policy.
Listing 4: Configuration changes in vite.config.js to make Comunica work with

Vue.
Listing 5: SPARQL query to parse the form description.
Listing 6: SPARQL query to retrieve and parse the options of a choice field.
Listing 7: Structure of the data saved after submitting a form.
Listing 8: SPARQL query to retrieve the pre-existing data for a certain field.
Listing 9: Example of a N3 rule to go from the cal vocabulary to the ncal vocabu‐

lary.
Listing 10: Example of a N3 rule describing policy to mark a to-do item as done.
Listing 11: Example of N3 rules describing different policies to be executed on

the form submission event.
Listing 12: Configuration changes in vite.config.js to make EYE-JS work with Vue

[54].
Listing 13: Configuration changes in ember-cli-build.js to make EYE-JS and

Comunica work with Ember.
Listing 14: RegEx to match N3 rules.
Listing 15: SPARQL query to parse the policies.
Listing 16: Implementation of the uniform reasoner interface of the EYE mock li‐

brary.

HTTP

RDF

SKOS

WASM

EYE

N3

HTML

OWL

SPARQL

URI

URL

W3C

XML

SHACL

API

Turtle

JSON-LD

FnO

ShEx

IDP

RegEx

List of Acronyms

Hypertext Transfer Protocol

Resource Description Framework

Simple Knowledge Organization System

WebAssembly

Euler Yet another proof Engine

Notation3

HyperText Markup Language

Web Ontology Language

SPARQL Protocol And RDF Query Language

Uniform Resource Identifier

Uniform Resource Locator

World Wide Web Consortium

Extensible Markup Language

Shapes Constraint Language

Application Programming Interface

Terse RDF Triple Language

JavaScript Object Notation for Linked Data

Function Ontology

Shape Expressions

Identity Provider

Regular Expression

foaf

schema

sh

ui

owl

form

hydra

solid

ncal

fno

cal

log

st

List of Ontologies

Friend of a Friend

Schema.org

Shapes Constraint Language (SHACL)

User Interface

OWL 2

RDF-Form

Hydra Core

Solid Terms

Nepomuk Calendar

Function Ontology

RDF Calendar

Log

Shape Trees

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://schema.org/
http://schema.org/
http://www.w3.org/ns/shacl#
http://www.w3.org/ns/shacl#
http://www.w3.org/ns/ui#
http://www.w3.org/ns/ui#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://rdf.danielbeeke.nl/form/form-dev.ttl#
http://rdf.danielbeeke.nl/form/form-dev.ttl#
http://www.w3.org/ns/hydra/core#
http://www.w3.org/ns/hydra/core#
http://www.w3.org/ns/solid/terms#
http://www.w3.org/ns/solid/terms#
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#
http://www.semanticdesktop.org/ontologies/2007/04/02/ncal#
https://w3id.org/function/ontology#
https://w3id.org/function/ontology#
http://www.w3.org/2002/12/cal/ical#
http://www.w3.org/2002/12/cal/ical#
http://www.w3.org/2000/10/swap/log#
http://www.w3.org/2000/10/swap/log#
http://www.w3.org/ns/shapetrees#
http://www.w3.org/ns/shapetrees#

Chapter 1: Introduction
We all use a kind of web form once in a while, that is because you take part in a survey,

or maybe because you have to fill in some kind of request. However, all of today’s forms
have the same problem: they are application specific. Current web forms are meant to be
used against one endpoint (1), often used for one (web) display (2), with one particular
workflow in mind (3), without a means to send and receive the data in another way (4). The
first two points show that current web forms are centralized. Additionally, the second point
not only shows that they are centralized, but together with the third and fourth points it
also shows that they are coupled in the sense that the display and the data are not sepa‐
rated.

A concrete example where we can see this problem in action is as follows. Alice goes to
a Google Forms form, she can only use that form to save data to the Google Drive and
nowhere else. However, we want Alice to be able to choose for herself where to store the
data, e.g. she might want to store it in her Solid pod [1] so she keeps ownership of the
data she enters. Forms worldwide have display logic for humans, but not for machines. To
fill in a form, you need a human being like Alice to interpret the fields in the form and to
know which and how to fill in the fields. Alice can thus not rely on a machine to help her fill
in the form with data she for example already entered once before in her Solid pod.
However, it could make Alice’s life way easier if it can tick the checkbox automatically
saying she eats vegetarian while filling in a form to register for an event, based on what
she specified once earlier in her own pod. In addition, Bob may have created a form that
Alice is very interested in. She wants to reuse it for another workflow, but she needs to
tweak the form a bit to fit her needs. Now she is lost because she cannot get the form de‐
scription to do this. Any information about the data model, the display model, and the rea‐
soning is now all centralized at Google.

To tackle this problem, this thesis introduces one solution by looking at Solid web forms
as a whole of 3 separate parts: display, validation, and reasoning. This will address the
fact that current web forms are centralized and coupled as described earlier. A solution
will be built that is decentralized and decoupled so that the display and the data are sepa‐
rated from each other. A web form definition should consist of a display part defining out
of which components the form consists, so how your form should look in terms of ele‐
ments. As an example, it could say that there should be a text field where the user can fill
in a name of a book. Next to that, there should also be a validation part where the shape
of the form should be defined. More specifically, it should say e.g. if a certain part is re‐
quired or not, or if multiple values are allowed and if so, how many. It could define that the
password field in the form requires at least 3 capital characters and 2 symbols. Lastly, we
have the third part, reasoning. For this, the assertion and logic language Notation3 [2]
could be used. By use of reasoning, the machine knows what to do with the data when
the submit button is pressed. As an example and to link the three parts together, one can
agree that specifying an element as required could happen in both the display and the val‐
idation part. We might want to display a red asterisk next to the name of our element in

https://solidproject.org/
https://solidproject.org/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/

the form indicating that this field is required. But at the same time, we also want this re‐
quired property to be defined in our validation, because once a form is being validated, we
want to be able to check if the required fields are filled in, but to do so, we need to know
which fields are filled in. However, this might lead to contradictions where a field is
marked as required in the display part but is not in the validation part. Here is where rea‐
soning comes into play. By introducing an extra reasoning layer, extra logic checks should
happen on the data that is submitted. To stick to the same example, that could mean that
when a required property is defined in the display part, it should error if that required prop‐
erty is not also defined in the validation part. Different types of relations could exist, e.g. it
could be that if it is a property in the display part, then it should be a property in the vali‐
dation part as well, but it could also be only a property in the validation part.

Ideally, the goal is to have this rea‐
soning happening under the hood
without extra work required from the
app developer. That could enable the
app developer to submit only one
definition e.g. the display part, after
which the validation part is generated
using the reasoning part.
Unfortunately, the move to decentral‐
ization and decoupling comes with
its own challenges. Two main chal‐
lenges need to be tackled before this
can be achieved. First, decoupling also means that another app should be able to use the
form definition to display the form. The assumption can however not be made that all
apps will use the same ontology to describe similar concepts. For example, Alice might
have created a form using ontology A, but if Bob wants to render that form using his fa‐
vorite app that only supports ontology B, he cannot do so. To achieve a real decoupled
solution, we need to be able to translate from one ontology to another. The concept of
schema alignment tasks will be introduced, functioning as a mapping to translate from one
ontology to another ontology understood by the app. This could be implemented using
reasoning by using rules that define how to translate one piece of data to another, just like
how you translate one language to another using a dictionary. Second, no single use case
is the same. Some reasoning steps, as were described earlier, might be computationally
heavy, while others are not but are required to happen fast without a lot of dependencies.
This leads to the idea that we should be able to dynamically change how we execute the
reasoning without a lot of work, based on the exact use case at that moment. Therefore,
we want to switch between browser-based and remote server-based solutions for reason‐
ing. We even might want to choose another kind of implementation that happens to be
more performant for a specific use case. This shows the need for a uniform reasoner inter‐
face that is the same for all reasoning implementations, such that we can easily switch be‐
tween them. Verborgh showed in Shaping Linked Data apps [3] a similar approach where

Figure 1: A shape can have associated forms so
people can easily view and edit data, and footprints
for determining how new data should be stored [3].

he split the whole into three parts: shapes, forms, and footprints, and how they relate to
each other. This is shown in Figure 1. As the footprint defines where to store the new data
corresponding to a shape, this corresponds to the reasoning part as explained above.
Although, they do not fully map onto each other as the reasoning part as was earlier pro‐
posed consists of both schema alignment and footprint tasks. The footprint part in
Verborgh’s view is only one of the two parts of the reasoning part of this thesis. The shape
defines the validation part, and the form defines the display part.

However, as this is the ultimate goal, it would already be interesting to see if such a split
into these three parts is feasible. Because of this, this thesis attempts to 1) be able to
generate semantic forms, allowing to make multiple interfaces based on that generated
form definition and allowing them to be interpreted by both humans and machines, 2) be
able to publish the data model behind the form in a machine-readable form, such that ma‐
chines can validate these data, and 3) be able to include a reasoning step in the whole,
such that a machine knows what to do with the data as soon as the submit button is
pressed.

The goal of this thesis is therefore defined as follows: towards the first steps of a three-
part view on Solid Web Forms by looking into the following three questions:

• How can machines be controlled in a declarative way to create forms for producing
RDF in multiple viewing environments (such as the web and text-based via a com‐
mand line)?

• How can machines be controlled in a declarative way to perform schema alignment
and footprint tasks by the use of reasoning?

• How can an abstraction be made to run reasoning in the browser or remotely?

To elaborate these goals, appropriate architectures are proposed to tackle each of
these questions and then an implementation is provided showing how these architectures
can be implemented in practice. This will provide a proof of concept for the proposed ar‐
chitectures. Several proofs of concept will be built, each one becoming more and more
complex and building on top of the challenges that have been overcome in the previous
ones.

After this introduction chapter, Chapter 2 will first discuss existing approaches and re‐
lated work. Chapter 3 will give a technical introduction to the technologies that will be
used throughout this thesis. The high-level architecture of the proposed idea of a three-
part view and how these parts relate to each other will be discussed in Chapter 4. Next,
the 3 predetermined research questions will be addressed, each in a separate chapter.
Chapter 5 will go into more detail on how multiple viewing environments can be supported
with the same produced RDF. Chapter 6 will discuss how reasoning can be used to per‐
form schema alignment and footprint tasks. An abstraction will be made to run reasoning
in the browser or remotely, which will be discussed in Chapter 7. Finally, Chapter 8 will
conclude this thesis and discuss future work.

Chapter 2: Related Work
The idea of describing a form in RDF is not new. In the literature, there are already some

existing approaches that describe a form in RDF. As was already mentioned in the intro‐
duction, the idea of this thesis is to split up the form in three separate parts. The first part
is the display part and consists of the form definition in Linked Data. To be able to define a
form, a vocabulary or ontology is needed that functions as the language. Most of the ex‐
isting approaches to describe a form in RDF are based on one certain ontology to express
what is called the display part in this thesis. In the following, there will be a discussion of
some notable ontologies which could be used for the definition of a form.

1. Ontologies

1.1. XForms 2.0

For the reasoning part, a certain language is needed to be able to express what actions
should happen at what events. You should e.g. be able to define what should happen with
the filled-in data when the user clicks on the submit button. Do we want to perform some
checks on it? Do we want to alter the data? Do we want to store it somewhere? All of
these actions should be possible to define.

One existing specification found in the literature that seemed to be useful for this prob‐
lem is XForms 2.0 [4]. This language to define forms is a W3C specification. It is based on
XML and also has a split architecture that separates presentation, content, and purpose,
this closely relates to the three parts: display, validation, and reasoning which are needed
to tackle the problem in this thesis. In XForms 2.0, a model defines what data is needed,
then one can have XML data defined concerning the model to become submitted data.
Values can be constrained by defining bindings. A bind element can be defined by refer‐
ring to an XML element which is part of a model. By adding attributes to that bind ele‐
ment, the type can be specified and other constraints can be set. A submission XML ele‐
ment can be added to define the destination of the data. Next to that, the HTTP method
can also be specified. However, adding statements allowing to perform actual reasoning
is something that does not exist in XForms 2.0. Next to this limited possibility to reason
over the data, it is also an XML-based language, and as defining the forms in RDF is de‐
sired because that is what is nowadays being used in this domain, it is not a perfect fit for
this research. It could however still be useful as a form of inspiration.

1.2. SHACL

The first ontology is SHACL [5], short for Shapes Constraint Language, which is a W3C
recommendation. It is a vocabulary to describe and validate RDF graphs against a set of
conditions. As the name suggests, SHACL is used to declare shapes, the target of the
shape is specified with the sh:targetClass property. SHACL can be used for valida‐
tion, during this validation, the target nodes become focus nodes for the shape. This is a
shape-validated RDF term using the triples from a data graph. In other words, the values
of the properties and other characteristics of the focus node are validated against the
constraints defined in the shape. Node shapes are used to declare constraints on the fo‐

https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

cus nodes. These constraints can be various kinds of things but are about the focus node
itself. Other constraints can be declared as well by the node shape via the
sh:property property to a property shape. Constraints like sh:datatype and
sh:minCount are being declared by these property shapes. In contrast to node shapes,
property shapes are used to declare constraints on the values of the properties of the fo‐
cus nodes. These constraints can be about the value of the property itself or the value of
the property concerning the focus node.

SHACL also provides some non-validating properties that are ignored by the SHACL
processors. These properties can be used to provide additional information, e.g. for build‐
ing a form. Some of those properties that speak for themselves are sh:name ,
sh:description and sh:order , but also sh:defaultValue and sh:group can
be used to provide additional information. These non-validating properties could be used
in the context of a form to define what the form should look like. For example, the
sh:defaultValue property could be used to define what the default value of a field
should be. The sh:group property could be used to group fields together in a form. The
sh:order property could be used to define the order in which the fields should be dis‐
played in the form.

1.3. Solid-UI

Solid-UI is the name for the User Interface widgets and utilities for Solid developed by
the SolidOS team. Next to the building blocks for Solid-based apps, there also exists a
Solid-UI vocabulary [6]. This vocabulary can be used to define the user interface of a Solid
application. It is also called Solid-UI Forms, reflecting the fact that it is used to define
forms or to render WebApp front-end elements. In this section, the Solid-UI vocabulary is
discussed.

The Solid-UI vocabulary is mainly focused on the display and rendering part of the front
end of forms. Next to that, a crucial part is the fact that it provides a binding to the under‐
lying Linked Data. To do so, there is a ui:property predicate that is used to bind a
form field to a property of the underlying data. There exist many different kinds of form
fields like ui:SingleLineTextField , ui:MultiLineTextField ,
ui:DateField , ui:BooleanField , ui:Choice , etc. To define a field using one of
these types, a subject must receive the rdf:type predicate with the type as the object.
Next to that, the ui:property predicate must be used to bind the field to a property of
the underlying data. Additionally, extra properties can be defined with predicates like
ui:label , ui:sequence , ui:required , ui:multiple , ui:maxLength ,
ui:pattern , etc. to define the behavior of the field. To define a choice or select field,
the subject of type ui:Choice must receive a ui:from predicate with as object an in‐
stance of owl:Class . Then all instances of that class will be used as options for the se‐
lect field.

The blog post by Hochstenbach, Wright, and Turdean on RDF forms for Solid [7] dis‐
cusses how the Solid-UI ontology can be used to define forms in RDF. These forms allow

https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/

users to edit their data in their Solid Pod in a user-friendly way, providing a use case for
the Solid-UI ontology. In addition, Smessaert’s blog post on Google Forms but the Solid
way [8] demonstrates how such an RDF form description can be created in a user-friendly
way using a drag-and-drop interface. A form description can be created not only in the
Solid-UI ontology, but also in the SHACL ontology as well as in the RDF-Form ontology.

1.4. RDF-Form

RDF-Form [9] is another vocabulary that can be used to define forms in RDF. Different
from SHACL and Solid-UI, RDF-Form has no way defined to link the fields to the form ob‐
ject. This means that all the fields that are defined in the same resource file as the form
are being used for that form. This is a limitation of RDF-Form, but it is also a simplification
as it is not needed to define a link between the form and the fields. However, this does not
conform to the idea of Linked Data, where everything should be linked to everything else
and multiple form definitions can be defined in the same resource file.

RDF-Form has multiple properties defined to function as predicates on form fields. One
important predicate is form:widget which is used to define what kind of field it is. The
value of this predicate is a string which is the name of the field type. Examples are
"string" , "group" , "textarea" , "number" , "dropdown" , "duration" , etc.
Next to that, there are also predicates like form:label , form:required ,
form:order , form:placeholder , form:option , etc. This form:required is
only one of the few predicates that can be used to add some basic validation to the form.
However, more advanced validation is not possible with RDF-Form. Again, a
form:binding predicate exists to bind the field to a property of the underlying data.
This predicate has as its value a URI which is the property that the field is bound to.

1.5. Hydra

Hydra [10] is a vocabulary to describe Web APIs in Linked Data. Its intended use is to
describe the server side of the API in a machine-readable way. There already exist some
technologies to describe a data model, but with Hydra, the focus is on describing Web
APIs to, as a server being, advertise to a client what possible actions are allowed to make
changes to the data. By doing this, a client can use this description to talk to the API with‐
out the need to hardcode how to talk to the API. The Web API is being defined as an
ApiDocumentation class. In this class, the main entry point of the API can be defined.
Next to that, it can also hold the supported operations, classes, and properties. As some‐
times HTTP status codes are not expressive enough on their own to describe the actual
problem, extra information can be given to status codes as well. Something that was not
yet possible with RDF, RDF Schema, and OWL was the ability to describe whether an IRI
is dereferenceable or if it can only be used as an identifier. With the Resource class, Hydra
allows us to describe this. Hydra also has the functionality to mark properties as read-
only, write-only, and required. Lastly, it also has numerous other concepts that lean to‐
wards the backend description of a Web API, like the PagedCollection which gives extra
info about paginated requests.

https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/

2. RDForms

RDForms [11] is a technology that allows form-based editing and presentation of RDF. It
is an editing framework for RDF that focuses on read-write Linked Data while keeping it as
simple as possible for the developer. It does so by providing 2 main components: the
RDForms library and the RDForms templates. The first one is responsible for the parsing,
serializing, and manipulation of RDF graphs, while the latter makes sure the right RDF ex‐
pression is produced and manipulated. These templates can be used for presentation,
editing, and validation of RDF data. Although this does the job of providing form-based
editing and presentation of RDF, it does not include any reasoning possibilities as was in‐
troduced for the idea of this thesis. There is no possibility to apply schema alignment
tasks or anything similar to that, nor is it possible to define actions to be performed on the
occurrence of certain events. It is just a tool to construct form-based RDF editors with the
requirement that RDF must be non-cyclic with a single root node.

3. Validation

3.1. Shape-Validator-Component

There has already been done quite some research on how to validate RDF data. The
most common way is to use SHACL. SHACL is a W3C recommendation that allows for
describing constraints on RDF data and has been discussed earlier in Subsection 2.1.2. In
Slabbinck’s thesis about cross-application interoperability [12], data validation using
Shape Trees is discussed. Shape Trees [13] are a way to describe the shape of data in a
way that is independent of the actual data. This allows one to validate data without having
to know the actual data. This is done by using a Shape Tree to describe the shape of the
data and then validating the data against that Shape Tree. With the st:shape property,
a Shape Tree can be linked to a SHACL or ShEx shape. This allows using SHACL or ShEx
to validate data against a Shape Tree. Slabbinck also made a shape validator compo‐
nent [14] which is the implementation of such a Shape Tree validator using SHACL
shapes. Using this component made for the Community Solid Server, it is possible to vali‐
date data against a Shape Tree using SHACL shapes to make sure that all the resources
in the containers conform to the SHACL shape. Having this guarantee lets applications
assume that this structure in the resources is correct and can be used to build on top of it.
Only resources that conform to the constraints of the SHACL shape will be able to be
added to the constrained container.

3.2. Rdf-Validate-Shacl

The previously mentioned implementation is a validator that functions on the server
side. Next to that, client-side validation is also something that is possible and has been
researched before. One such example is the rdf-validate-shacl package by Zazuko [15].
This is a JavaScript package that implements the SHACL specification on top of the
RDFJS stack. It works by first initializing the validator with a given shape and then validat‐
ing a given dataset against that shape. The validator will then return a list of validation re‐
sults that can be used to determine if the dataset conforms to the shape. This is done in

https://rdforms.org/#!index.md
https://rdforms.org/#!index.md
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/zazuko/rdf-validate-shacl
https://github.com/zazuko/rdf-validate-shacl

the form of a ValidationReport object containing on one hand these results and on
the other hand a boolean conforms indicating if the dataset conforms to the shape.
Everything is done in JavaScript and can thus be used on the client side.

3.3. Shacl-Engine

Another noteworthy implementation of a client-side validator in JavaScript is the shacl-
engine package by Thomas Bergwinkl [16]. At the time of writing, it is a new implementa‐
tion of the SHACL specification that focuses on performance. The author discovered a
bottleneck in the rdf-validate-shacl package which was discussed in Subsection 2.3.2 and
decided to create a new implementation that would be faster. The bottleneck lies in the
fact that all properties and values were fetched from the Dataset object in the
rdf-validate-shacl package each time a shape was processed [17]. This implemen‐
tation eliminates this cost by introducing a compile step. This compile step finds a match‐
ing compile function while going through all properties of a shape and then adds the result
of that function to the shape. By doing so, validating a dataset can now be done by using
the compiled validation functions. A comparison of the performance of the two implemen‐
tations shows that the shacl-engine package is 15 times faster than the
rdf-validate-shacl package [17].

https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine

Chapter 3: Technical Introduction

1. Linked Data

Today’s web contains a lot of data. However, all of this data is useless if no one is able
to find it. To make data discoverable, we should create a web of data. In 2001, Berners-
Lee, Hendler, and Lassila proposed the Semantic Web [18] as the idea to make the web
machine-readable. This is done by using RDF to describe the data and SPARQL to query
it. Linked Data [19] is a set of best practices to publish and interlink data on the web. The
idea was to use RDF to publish data as machine-readable and to link it to other related
data. Berners-Lee proposed four rules to publish data as Linked Data. Although he called
them rules, they are more like best practices that turn your data into Linked Data. First,
URIs should be used as names for things. Second, these URIs should be dereferenceable,
meaning that when you visit the URI, you should get back data about the thing. Third, the
data should be published in a standard format, such as RDF. Finally, the data should be
linked to other data, so that you can discover more things.

2. RDF

RDF [20], short for Resource Description Framework, is a framework for describing re‐
sources on the web. Where information is often only available for humans to read, RDF
makes it possible to describe information in a way that is also machine-readable. This is
done by describing resources as a set of triples, where each triple consists of a subject, a
predicate, and an object. This is also called an RDF statement and is written as
<subject> <predicate> <object> . The subject is the resource that is described,
the predicate is the property of the resource, and the object is the value of the property.
For example, the sentence “Alice is 1.65 meters tall” can be described in RDF as
<Alice> <height> "1.65"^^<http://www.w3.org/2001/XMLSchema#double> .
In this example, the subject is Alice , the predicate is height , and the object is
"1.65"^^<http://www.w3.org/2001/XMLSchema#double> . The object is a literal,
meaning that it is a value instead of a resource. The literal is a string with the value 1.65
and the datatype http://www.w3.org/2001/XMLSchema#double . The datatype is
used to indicate the type of the value, in this case, a double. However, the object can also
be another resource, for example, the sentence “Alice is the daughter of Bob” can be de‐
scribed in RDF as <Alice> <daughter> <Bob> . This creates links between re‐
sources, which is the basis of the Linked Data idea. To keep the example simple, no full
IRIs are used, but in reality, IRIs are used to identify resources and predicates. One can
look up the predicate to find out what it means, for example, the predicate height can
be looked up to find out that it is a property of a person that describes the height of that
person. Vocabularies are often used in RDF, they are a set of predicates and classes that
can be used for resource description. The advantage of such vocabularies is that the de‐
scription of certain concepts can be easily reused. This opens the door to more qualitative
definitions of concepts and improves data interoperability.

There exist multiple serializations of RDF, the most common ones are Turtle [21] and

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/

JSON-LD [22]. Turtle is a textual syntax for RDF allowing us to write RDF graphs more
compactly and in natural text form. Turtle allows the use of prefixes to shorten IRIs, for ex‐
ample, the predicate http://example.org/height can be written as ex:height if
the prefix ex is defined as http://example.org/ . One can define the prefix by writ‐
ing @prefix ex: <http://example.org/> . at the top of the document. JSON-LD
is a JSON-based serialization of RDF that allows embedding RDF in JSON documents.
There are also other serializations, such as RDF/XML [23], RDFa [24], and N-Triples [25].
These are all different ways of writing the same triple, so they are logically equivalent.

3. SPARQL

SPARQL [26], short for SPARQL Protocol and RDF Query Language, is a query and ma‐
nipulation language for RDF. Only SPARQL Query will be used in this thesis, as SPARQL
Update is no longer part of the Solid specification [27] as a way to modify resources.
SPARQL Query is a language that is used to query RDF graphs. It is a declarative lan‐
guage, meaning that you describe what you want to get back, not how it should be done.
Different types of queries can be written in SPARQL, but the most common one is the
SELECT query. This query is used to get back a set of bindings that match the query.
Other types of queries are CONSTRUCT and ASK . CONSTRUCT queries are used to get
back a new RDF graph that matches the query. ASK queries are used to check if the
query matches the RDF graph and will thus return a boolean. There are also DESCRIBE
queries that return a single result RDF graph containing RDF data about resources.

A simple SELECT query is shown in Listing 1. It is a query that selects the height of
Alice. The query starts with the SELECT keyword, followed by the variables that should
be returned. In this case, the variable ?height is returned. The WHERE keyword is used
to define the pattern that should be matched. Each variable is always preceded by a
question mark.

4. Solid

Solid [1] is a web decentralization initiative that aims to give people back control over
their data. It is a set of specifications [27] that is used to build decentralized applications.
The Solid ecosystem is built on top of the Linked Data principles and uses RDF as the
data model. Solid introduces the concept of a Pod, which is a personal decentralized on‐
line data store. People can decide for themselves who has access to what resources in

Listing 1:

@prefix ex: <http://example.org/>.

SELECT ?height
WHERE {

ex:Alice ex:height ?height .
}

Simple example of SELECT SPARQL query that selects the height of Alice.

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/
https://solidproject.org/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol

their Pod, both people and applications. These resources can be anything, from simple
text files to (complex) structured data or any other regular file that you can find on the
web. The aforementioned specifications define interoperable data formats and protocols
that are used to interact with Pods. It builds on top of existing web standards, such as
HTTP, CORS, and RDF, and uses them to create a decentralized web that focuses on pri‐
vacy and data ownership. Applications can then read and write data to Pods using the
Solid specifications. This allows people to use different applications to interact with their
data, without having to worry about data silos [28].

5. Notation3

Another language that could be useful is Notation3 [2]. This language is a logic lan‐
guage that is used to define assertions and rules. It is a language that is used in the
Semantic Web and is also used in the Solid ecosystem. As it is a language that is used to
define rules and assertions, it is exactly what we want to use for the reasoning part. It
looks very promising to use it to define the reasoning part of a form, as it is a logic lan‐
guage, but it is not a language that is designed for this purpose. It builds on top of Turtle
meaning that every valid Turtle document is also a valid N3 document, it just adds even
more aspects to the language. One of those additional elements is also really important
for this research, namely logical implications and variables. This type of extension imple‐
ments the If-Then style via modus ponens which makes it possible to define the kind of
statements as discussed earlier. Next to these logical implications, N3 also allows one to
write statements about other statements by quoting them. You could for example easily
write the following:
:Alice :says { :Bob :eats :chicken. :Trudy :likes :Bob. }. . Another
big addition to N3 is the set of built-ins that allows via a set of vocabularies to query and
manipulate N3 documents. How built-ins work can be compared with the logical program‐
ming language Prolog, the built-in list:first can be used to get the first element of
an RDF list, but on the other hand it can also be used to check if the first element is equal
to a given value.

As stated earlier, N3 is a language built on top of Turtle, but at the same time, Turtle is a
textual syntax for RDF allowing to write RDF graphs more compact and in natural text
form [21]. In contrast to XForms 2.0, this makes Notation3 a perfect fit for this problem.

5.1. N3 Patch

As N3 is a language that is used to define rules and assertions, it is also a language that
is used to define changes to a document. A Notation3 document is passed as a body of
an HTTP PATCH request, identified by defining the Accept-Patch header equal to
text/n3 . This concept is described in the Modifying Resources Using N3 Patches sub‐
section of the Solid specification [27] as the way to modify resources in a Solid pod. The
request is targeted to the resource that should be modified. As said earlier, the body
should be a N3 document and the content of this document should be a
solid:InsertDeletePatch subject having a solid:inserts and

https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/#builtins
https://w3c.github.io/N3/spec/#builtins
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol

solid:deletes predicate. The solid:inserts predicate should contain a list of
triples that should be added to the resource and the solid:deletes predicate should
contain a list of triples that should be removed from the resource. The
solid:InsertDeletePatch subject can also have a solid:where predicate which
should contain a list of triples that should be matched in the resource. If the
solid:where predicate is not present, the solid:inserts and solid:deletes
predicates should be applied to the whole resource. An example of such a N3 Patch body
is given in Listing 2.

6. Reasoner Implementations

Next to a language to define the reasoning part, an implementation to execute the rea‐
soning part is also needed. There already exist many implementations of various kinds.
They differ based on the programming language they are implemented in and on the logic
language they work on. As the focus of this thesis is on the logic language N3, the imple‐
mentations working on N3 are the most relevant to discuss here. Existing implementations
working on N3 include but are not limited to EYE [29], EYE-JS [30], jen3 [31] and
N3.js [32]. Next to those N3 reasoner implementations, also RoXi [33] exists which is an
implementation in Rust working on the Datalog [34] logic language with N3 syntax.
Datalog is situated in the Prolog family using a bottom-up rather than a top-down evalua‐
tion model.

6.1. EYE

As EYE will be used during this thesis, a short description of it is given here. EYE [29] –
short for Euler Yet another proof Engine – is a reasoning engine accepting N3 P-code
which is being interpreted with the use of a Prolog virtual machine. N3 P-code is a Prolog
interpretation of N3 data by parsing RDF triples and N3 rules. EYE avoids infinite rules by
interpreting a N3 rule P => C as P AND NOT(C) => C . As discussed in Drawing
Conclusions from Linked Data on the Web: The EYE Reasoner [29], because EYE tries to
reach the goal set by a user by applying logical rules, EYE is in terms of algorithms a theo‐
rem prover. In EYE, independent proof validation is possible thanks to the possibility to
follow the steps via which the proof came to its goal allowing one to understand the rea‐
soning process and validity. It is being developed by De Roo, a researcher at Ghent
University. It is one of the most complete N3 reasoners and is therefore used in this thesis.

Listing 2:

@prefix solid: <http://www.w3.org/ns/solid/terms#>.
@prefix ex: <http://www.example.org/terms#>.
@prefix ncal: <https://www.semanticdesktop.org/ontologies/2007/04/02/ncal/>.

_:executePolicy a solid:InsertDeletePatch;
solid:inserts { ex:Todo ncal:todoStatus ncal:completedStatus. };
solid:deletes { ex:Todo ncal:todoStatus ncal:inProcessStatus }.

Example of a N3 Patch body.

http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/william-vw/jen3
https://github.com/william-vw/jen3
https://github.com/rdfjs/N3.js
https://github.com/rdfjs/N3.js
https://github.com/pbonte/roxi
https://github.com/pbonte/roxi
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/

6.2. EYE-JS

In addition to EYE, EYE-JS [30] is a distribution of EYE to deliver reasoning for the
browser and node by the use of WebAssembly. Under the hood, it uses EYE by using the
new technology SWI-Prolog in the browser using WASM - Wiki [35] allowing to run Prolog
code in the browser. EYE-JS makes use of this new technology by running EYE in the
browser or Node via this SWI-Prolog implementation and performing reasoning on the
data. This removes the need for a separate EYE instance running on a server and allows
for direct reasoning execution client side.

7. Comunica

Comunica [36] is a knowledge graph querying framework initially developed in 2018 as
an open-source framework by IDLab at Ghent University - imec. Since September 2022,
the Comunica Association is launched to make Comunica more sustainable in the long
term. The primary goal of Comunica is to have one or more interfaces like SPARQL end‐
points and Triple Pattern Fragments (TPF) interfaces over which SPARQL queries can be
executed. Comunica querying works on Linked Data which can be published on the Web
in many different shapes and forms using plain RDF files in various syntaxes. Such syn‐
taxes include but are not limited to JSON-LD, Turtle, and HTML+RDFa. Comunica is being
built as a set of modules allowing easy plugging in of new components to use different al‐
gorithms or experimental features. This is especially useful because of the increasing het‐
erogeneity of Linked Data on the Web, which makes it hard to build a single query engine
that can handle all of it. Components.js [37] is used to put the concept of dependency in‐
jection [38] to use in Comunica. This allows for easily swapping out components and eas‐
ily adding new components, as well as configuring and combining them by just using a
configuration file. As Comunica is written in JavaScript, it can be used in the browser, via
the command line, or any Web or JavaScript application. In this thesis, Comunica is used
in the browser to query resources with SPARQL. Next to SPARQL query evaluation, mod‐
ularity, being Web-based and supporting heterogeneous interfaces, the engine also sup‐
ports federated querying over different interfaces. This allows to query multiple sources at
once and combine the results into a single result set.

8. Ember-Solid

Ember-solid [39] is an add-on for the Ember.js [40] front-end framework developed by
redpencil.io. It allows easy integration with a user’s Solid pod and conforms to the specifi‐
cations in a way that is maximally abstracted for the developer. A developer can by work‐
ing in the same way as with the frequently used ember-data [41] add-on, work with Solid
resources. This allows for easy integration of Solid into existing Ember applications. This
add-on can thus be seen as a (more limited) drop-in replacement for ember-data which in‐
stead of storing data in a certain kind of database, stores it in a Solid pod. Ember-solid it‐
self makes use of the rdflib.js [42] library to work with RDF data. Rdflib.js is a Linked Data
API for JavaScript that can be used in the browser and Node.js. It is being developed by
Berners-Lee, the LinkedData team, and many contributors.

https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/
http://componentsjs.readthedocs.io/en/latest/
http://componentsjs.readthedocs.io/en/latest/
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://github.com/redpencilio/ember-solid
https://github.com/redpencilio/ember-solid
https://emberjs.com/
https://emberjs.com/
https://redpencil.io/
https://redpencil.io/
https://guides.emberjs.com/release/models/
https://guides.emberjs.com/release/models/
https://github.com/linkeddata/rdflib.js
https://github.com/linkeddata/rdflib.js

9. The Function Ontology

The Function Ontology (FnO) is a way to, semantically, define and describe
implementation-independent functions, just like their relations to related concepts such as
parameters, and mappings to specific implementations and executions. It is first intro‐
duced in Implementation-independent function reuse [43] by Ben De Meester et al. The
full specification is available at https://w3id.org/function/spec [44].

A link can be made with the Hydra vocabulary as the hydra:ApiDocumentation
can be seen as a fno:Implementation . To be able to describe what a
fno:Implementation is, some other parts of the Function Ontology need to be dis‐
cussed first. The ontology consists of some concepts. First, a fno:Function is a
process that performs a specific task by associating one or more inputs to an output. It
expects a list of ordered Parameters and returns a list of Outputs. The Parameters define
the relation being used for the execution in the form of a predicate and can also hold a
specific type or other metadata. Functions can be linked to Problems, which are a more
general description in comparison to Functions. Problems themselves can be linked to
other Problems by using the SKOS standard [45]. A fno:Execution links the input data
and the resulting output data to the parameters and outputs of Functions. It allows one to
describe independently of the implementation how input data is transformed into output
data. A fno:Implementation is a set of function units. The description of the imple‐
mentation itself is decoupled from the Function Ontology (FnO). The model is not limited
to a specific set of supported development contexts by allowing any development context
to be specified. Lastly, a fno:Mapping connects an abstract function with a specific
part of a concrete implementation existing of a link between the function and the imple‐
mented method and a link between the inputs and outputs of a function and the parame‐
ters and returns values of the methods.

9.1. Orchestrator for a Decentralized Web Network

One application of the Function Ontology is the Orchestrator. The Orchestrator [46] is a
specification that describes the implementation requirements for the Orchestrator compo‐
nent. This specification uses the Function Ontology as described earlier to describe what
should happen when a trigger takes place. In the then-part of this policy, this FnO de‐
scription is expressed. These policies are written in a policy language understandable by
the Orchestrator. In practice, this means that policies are written using a rule language like
SHACL, SPARQL, or Notation3. An example of a policy is taken from the Orchestrator
specification [46] and is shown below in Listing 3. When the orchestrator now detects that
a new triple ?notification a as:Create is added to one of the watched resources,
it will execute the then-part of the policy. In this case, it will send a notification to Bob.
This is done by executing the function ex:sendNotification with the parameter
ex:notification set to the value of ?notification . The event to which the
Orchestrator responds is called a trigger.

https://w3id.org/function/spec
https://w3id.org/function/spec
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/skos-reference/
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator

Koreographeye [47] is a miniature implementation of this specification. It only uses a top
layer of what FnO is capable of, FnO goes much further than this but for the use case of
Koreographeye, this is enough. It only needs a vocabulary to be able to describe what
JavaScript implementations need to be executed when a certain event takes place.

Listing 3:

rule "Notify Bob about newly created artifacts"

when

?notification a as:Create .

then

?notification as:target <http://bob.institution.org/profile/card#me> .

[a fno:Execution ;
fno:executed ex:sendNotification

ex:notification ?notification
] .

Example of a policy.

https://github.com/eyereasoner/Koreografeye
https://github.com/eyereasoner/Koreografeye

Chapter 4: High-Level Architecture
As was already made clear in the introduction, the goal of this thesis exists out of three

parts, each having its own research question. The methods and applications used to an‐
swer these questions will overlap and build upon each other. In the following three chap‐
ters, the three research questions will be examined and discussed. Each chapter will con‐
tain a more in-depth architectural description and, per chapter, the relevant parts of these
methods and applications will be explained and the subsequent chapters will further ex‐
pand on these. This chapter will present the high-level architecture to present an overview
of how the different parts of this thesis relate to each other.

A common way how web applica‐
tions store their data is by using only
one fixed structure or vocabulary.
This means that the data is stored in
a fixed structure and the application
is built on top of this structure, leav‐
ing the app developer to decide on
how the UI of the app will look like.
Because of that, it is not possible to
use the data with another application
that uses a different structure, which
will quickly be the case when appli‐
cations are built without taking into
account the use of other applica‐
tions. This is even the case for many
Solid apps that assume the data is stored in a fixed location in the pod with only one vo‐
cabulary and is also available in the pod. This means that hard-coded assumptions about
data access patterns and structure are made about the data that is stored in the pod [3].
In 2019, Verborgh and Berners-Lee proposed a new vision [48] on how to build web appli‐
cations that are more flexible and allow for more use cases. The idea of having a three-
part view already originates from their view on Linked Data Shapes, Forms, and
Footprints. This shift from a single structure to a three-part view is shown schematically in
Figure 2. The left part is the current situation where the data is stored in a single structure
and the application is built on top of this structure. The right part is the goal of this thesis
where the data is divided into three parts, each with its own purpose, namely the form for
the display part, the shape for the validation part, and the footprint for the reasoning part.
As there has been a lot of research done on the topic of validation using shapes, as dis‐
cussed in Section 2.3, this will not be a core part of this thesis.

The high-level architecture can also be viewed from a different angle. In traditional cen‐
tralized web applications, different users interact with the same centralized web server us‐
ing different interfaces. These web interfaces are written for that server and only work for
that single web server. Additionally, not only is the data stored in a fixed structure, but the

Figure 2: Transition from the traditional single
structure where all the data is defined using a single
vocabulary, to a three-part view of data, consisting of
a form (for display), shape (for validation), and
footprint (for reasoning) part.

data is also stored on the servers of
the application. This makes it impos‐
sible to use the data with another ap‐
plication. This is shown in Figure 3.
Different users are shown interacting
with the same traditional centralized
web server using different interfaces.
The interfaces used belong to that
specific web server and work only for
that web server. There is no interac‐
tion with any other data storage sys‐
tem, meaning that the data will stay
on the application’s server, being un‐
available to other applications and
creating the by David Simonds called
Walled Gardens [49] where people
are stuck to certain web applications
because their data is stored on the
servers of these applications and is
not available to other applications.

Solid has a decentralized approach
to how data is stored and accessed
by web applications. The user inter‐
acts with Solid apps using data from one or more pods. However, the apps still make as‐
sumptions about the data that is stored in the pod. The app is designed for one specific
use case and the data is most of the time stored in a specific way.

A typical example is a Solid app that manages recipes. It makes some assumptions
about the data, vocabulary, and storage location. These assumptions are different for a to-
do app, a book review app, or any other app. This means that if there exists an app that
let users fill in a form to enter a recipe, a separate app would be needed in the case that
the user wants to enter a to-do list or a form to enter a book review. Figure 4 shows this
high-level architecture of Solid apps where the user interacts with a Solid application de‐
signed for a specific use case using data from one or more pods by making assumptions
about the stored data. This differs from the traditional centralized web applications where
the data is stored on the servers of the application. This works because the Solid pod
uses a standardized protocol and RDF format to communicate with the app. By using this
standardized protocol for communication between the app and the pod, the problem of
having all different web servers using different protocols from the first stage is solved.

This thesis tries to push this decentralized architecture a step further. A declarative
Solid app is introduced that makes no assumptions about the interface and app itself. The
idea is to tackle the problem of the previous stage where a separate app was still needed

Figure 3:

web

HTML CGI-BIN

...

JSON

Interface 1 Interface 2

Users interact with the same traditional
centralized Web server through different interfaces
that are written for that server and work only for that
Web server.

for each use case, no matter how
similar they were. After all, it is much
more efficient to have one app that
can handle multiple use cases than
to have multiple apps that can only
handle one use case. To still be able
to present a different user interface to
the user for each use case, this user
interface should be described in a
declarative way that is then passed
to the app. This declarative descrip‐
tion of the user interface is called the
form description resource in Figure 5
and as its name suggests, it de‐
scribes the form that the user will
see. The application still needs to be
able to understand this declarative
description of the user interface. This
only holds if the form description re‐
source is written using a certain on‐
tology that the app can understand.

Imagine a world where both Alice
and Bob store their to-do lists in their Solid pods. Charly wants to create an app that al‐
lows to render these to-do’s in a declarative app. As there is no standard ontology for to-
do’s, the case that Alice uses ontology A and Bob uses ontology B is likely to occur. This
means that Charly has to write an app that can understand both ontology A and ontology
B. However, without a standard, no assumptions can be made about the ontology used, it
could be that only ontology A and B are used, but it could also be that Alice uses ontology
A, Bob uses ontology B, and Dave uses ontology C. It becomes clear that Charly has to
write an app that can understand all ontologies that are used to describe a to-do. To
weaken this assumption, a so-called N3 conversion rules resource is provided to the app.
The purpose of this resource is, in the case of forms, to convert the form description re‐
source into a language that the application can understand. It does so by functioning as a
dictionary between the ontology used in the form description resource and the ontology
that the app can understand. This way, the app should only be able to understand one on‐
tology, the ontology that the N3 conversion rules resource converts to. The translation
from one ontology to another is called the schema alignment task, the execution of the
policies when an action happens like pressing a button is called the footprint task. These
tasks should be executed by the renderer app with the use of reasoning. Therefore, the
renderer app uses a reasoner, local or remote, depending on the use case. How this
works is covered further in Chapter 6.

Figure 4:

app

S S

RDF RDF

Users interact with a Solid application
designed for a specific use case using data from one
or more pods by making assumptions about the
stored data.

Lastly, a data resource can be provided to the app. This resource contains any pre-
existing data that is used to fill in the form after rendering it. Depending on the policies,
the data resource URI could also be used as the location to store the data that is entered
in the form. These input resources are then used by the renderer app in Figure 5 to output
the actual app that will be presented to the user. No assumptions should be made about
the app itself or the interface that is used to interact with the app. The app could be a web
app, a command line app, a mobile app, or any other kind of app. This concept of having
a display part that is unrelated to the viewing environment is discussed in Chapter 5. This
declaratively generated app then interacts with one or more Solid pods as was already the
case in the previous stage to store the data that is entered in the form. This last step
where the app interacts with the pod can be any kind of interaction with the pod or any
other web server. Again, no assumptions should be made and other types of interactions
such as HTTP requests to other services should be possible as well. The strength of this
architecture is that it allows for a declarative way of describing these tasks that should
happen when an action is performed by the user.

Figure 5:

declaratively
generated app

S S

RDF RDF

renderer app

Data resource

N3 conversion
rules resource

Form
description
resource

WEB CLI

remote
reasoner

local
reasoner

uses

Users interact with a dynamically generated application built by a form renderer
application using the declarative form description, an optional data resource, and an optional
resource with N3 conversion rules as input. This generic renderer application can build for multiple
viewing environments without making assumptions about the interface and app itself. The renderer
uses a reasoner to apply the schema alignment and footprint tasks. The user can use the
generated application to interact with one or more Solid pods.

Chapter 5: Multiple Viewing Environments
This chapter will try to answer the first research question: “How can machines be con‐

trolled in a declarative way to create forms for producing RDF in multiple viewing envi‐
ronments (such as the web and text-based via a command line)?”. First, an explanation
of the architecture and design choices will be given. After that, an evaluation part will be
given based on a user experience study. To conclude the chapter, the implementation is
discussed in more detail, followed by testing the solution against the research question
and discussing the results.

1. Architecture

As was discussed earlier in Chapter 4, the architecture of the solution is split into three
parts: display, validation, and reasoning. In this chapter, the display part will be discussed
in more detail. The display part is the part that is responsible for rendering the form to the
user. It describes how the form should look like, i.e. what fields it should contain.

Let’s first take a look at the flow of all the data that is involved in the process of creating
and filling in a form. The flow of forms data is shown in Figure 6. First, some definition is
needed such that a renderer application knows what to render. This definition is called a
form description and is an RDF resource that describes the form. This form description
can be defined in any ontology that is capable of describing a form. There already exist
ontologies that can be used for this purpose, in this thesis three ontologies will be used:
the SHACL ontology [5], the Solid-UI ontology [6], and the RDF-Form ontology [9]. The
form description will do the decoupling of the three parts: display, validation, and reason‐
ing. The advantage of such a definition is that there is a standard for how to describe a
form and what actions should be taken when the form is submitted. The disadvantage of
such a definition is that the display and validation parts are mixed in the same form de‐
scription resource, while possibly being defined in different languages. Because both can
be used to describe certain properties, e.g. required, it can create a form of ambiguity that
conflicts with each other.

Let’s, for now, assume that such a form description exists. (How to create such a form
description is discussed later in Chapter 6, along with an implementation of such a
FormGenerator application.) The form description is saved in the user’s Solid pod in RDF.
This RDF form description can then be used to render the form for any user who wants to
fill it out. The FormRenderer is an application that allows the user to fill in the form via a
Web browser. However, the strength of this split architecture lies in the fact that any appli‐
cation could be used to render the form. An example of such an application is the FormCli
which is a command line interface that allows the user to fill in the form via the terminal.
This application provides a text-based interface to fill in the form. As said before, the form
description contains all the information needed to render the form, but it also contains the
policies that describe what should happen with the data that is filled in the form after it is
submitted. How these policies are defined and how they work in detail relates to the foot‐
print tasks and is discussed in Chapter 6.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/

To apply the schema alignment tasks to the form description in Chapter 6, a N3 conver‐
sion rules resource is required in addition to the form description resource. The third input
resource that is displayed in Figure 6 is the resource containing the pre-existing data
triples. This resource is optional and can be used to fill in the form with pre-existing data.
The decision was made to make this a separate resource as this separates the filled-in
data from the form description. This way, any resource can be provided by the user po‐
tentially containing pre-existing data. This also means that a user who fills out the form
does not need to have write access to the resource that contains the form description.

By declaratively describing the form in RDF in the display part, it should be possible to
render the form in any environment. Any existing or new ontology can be used, as long as
it is capable of describing a form. The idea here is to prove that these descriptions are not
dependent on a specific environment like the web with HTML but that they can be used in
any environment like the command line as text. The RDF description should be parsed
and then interpreted by the renderer app to display the form in the environment that it is
designed for.

2. Implementation

2.1. Form Renderer

Figure 6:

FormGenerator
form

description
(RDF)

FormRenderer
(HTML)

FormCli
(Text)

Optional other
renderers

uses

generates
is used as

input form input
data

N3
conversion

rules

functions as optional pre-existing input data

optionally provides Execute
policies

can be used

uses

The user first creates a form description using the FormGenerator. Any renderer
application, such as the FormRenderer or FormCli, can then be used to render the form for the user
to fill out. The user can provide a resource with pre-existing data to fill in the form, and a resource
with conversion rules to apply the schema alignment tasks to the form description in case the form
description is not written in the same ontology as the renderer application. The completed form can
then be saved to the user’s Solid pod by executing the policies on submission.

This section will explain the FormRenderer application to render forms in a Web
browser. A screenshot of the FormRenderer application is shown in Figure 7. In the next
section, the text-based FormCli that runs in the terminal will be explained. In Figure 6 can
be seen that the FormRenderer application, just like any other renderer application such
as the FormCli, takes 3 URLs to resources as input from the user: the optional URI of a re‐
source containing any pre-existing data triples to fill into the form, the optional URI to the
resource containing the N3 conversion rules to apply the schema alignment tasks onto the
form description, and the URI to the resource containing the actual form description. Let’s
first take a look at the simple case without schema alignment tasks and focus on the
other two resources by assuming that the form description is already written using the
same ontology as the renderer app, i.e. Solid-UI. First, an introduction to how this app
was built will be given. The FormRenderer was created in the Vue.js framework,
Subsubsection 5.2.1.1 will elaborate on this. Authentication is implemented in the applica‐
tion so that the user does not have to make his Solid pod publicly readable and writable.

Figure 7: Screenshot of the implemented FormRenderer application.

This allows a user to authenticate with their Solid pod and then the app can read and
write to the pod on behalf of the user. This is discussed in Subsubsection 5.2.1.2. Parsing
the form description is discussed in Subsubsection 5.2.1.3 and parsing the pre-existing
data to fill in the form is discussed in Subsubsection 5.2.1.4.

2.1.1. Vue
Vue is a progressive framework for building user interfaces. The Comunica query engine is
used to query the resources that are passed to the app. However, Comunica did not work
out of the box with Vue, so some workarounds had to be done to make it work, which are
described here. To make it work, the vite.config.js file was adapted to make it work
with Vue and Vite. The required changes are shown in Listing 4. All Comunica queries are
executed in the browser with input data that is passed as text to the query engine. The
data is fetched separately from the given URLs using the authenticated session because
this allows the data to be manipulated before it is passed to the query engine.

2.1.2. Authentication
The resources containing the form description and the pre-existing data to fill in the form
are fetched from the given URLs. However, it is easy to come up with a scenario where
the user does not want to make these resources publically readable and writable.
Therefore, a form of authentication was implemented such that the resources don’t need
to be publicly available. With this, the user can authenticate with a Solid pod and the ap‐
plication will automatically load the resources from the pod using an authenticated re‐
quest. To authenticate, the @inrupt/solid-client-authn-browser library is used.
The user has to enter their Solid Identity Provider (IDP) and then click the login button. The
user is then redirected to the IDP to authenticate. After authentication, the user is redi‐
rected back to the application and the application can now make authenticated requests
to the Solid pod. To prevent the user from having to authenticate every time they want to
use the application, silent authentication [50] is used. This is done by calling the
handleIncomingRedirect({ restorePreviousSession : true }) function.

Listing 4:

import { defineConfig } from 'vite';
import vue from '@vitejs/plugin-vue';

// https://vitejs.dev/config/
export default defineConfig({
plugins: [vue()],
build: {
commonjsOptions: {
strictRequires: true,

},
},
define: {
global: "window",
"process.env": {},

},
});

Configuration changes in vite.config.js to make Comunica work with Vue.

https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/

As before, the user is redirected to the IDP for authentication. However, if the user is still
logged in, the IDP will not ask the user to authenticate again, but will immediately redirect
the user back to the application without requiring any interaction from the user. In other
words, this happens under the hood without the user being aware of it, which improves
the user experience by eliminating the need to redirect to the authentication page.
2.1.3. Parsing the Form Description
First, all content of the resources linked by their URIs is fetched. The authenticated fetch
from Inrupt’s library is used in the case that the user is authenticated. As mentioned be‐
fore, for now, the assumption is made that the form description is already written using
the same ontology as the renderer app, i.e. Solid-UI. This assumption will later on in
Chapter 6 be replaced with the appropriate solution of applying the schema alignment
tasks to the form description. The form description is then parsed by the Comunica en‐
gine using the SPARQL query shown in Listing 5.

This outputs a list of JavaScript objects, each representing a field in the form. First, this
list is sorted by the defined sequence number of each field. Then, in the case of a choice
field, the options are retrieved from the resource specified in the from property of the
field by performing an additional SPARQL query on the resource. This SPARQL query is
given in Listing 6. The options are then added to the field object in JavaScript.

As can already be inferred from the listings above, the base vocabulary is chosen to be
Solid-UI for this implementation, as it is a vocabulary that was specifically designed for

Listing 5:

PREFIX ui: <http://www.w3.org/ns/ui#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?type ?property ?label ?from ?required ?multiple ?sequence WHERE {
<${this.formUrl}> ui:parts ?list .
?list rdf:rest*/rdf:first ?field .
?field a ?type;
ui:property ?property.

OPTIONAL { ?field ui:label ?label. }
OPTIONAL { ?field ui:from ?from. }
OPTIONAL { ?field ui:required ?required. }
OPTIONAL { ?field ui:multiple ?multiple. }
OPTIONAL { ?field ui:sequence ?sequence. }

}

SPARQL query to parse the form description.

Listing 6:

PREFIX ui: <http://www.w3.org/ns/ui#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
SELECT ?value ?label WHERE {
?value a <${field.from}> ;
skos:prefLabel ?label.

}

SPARQL query to retrieve and parse the options of a choice field.

use in forms and is already being used by the SolidOS team in this context. It already ex‐
ists for quite some time, and it is fairly complete in terms of elements, or at least for this
use case. Another alternative would have been SHACL, but this is a more general ontol‐
ogy and is not specifically designed for forms. It could however be used for this, and later
on, it will also be used to show how the FormRenderer application can render a form writ‐
ten in another ontology, i.e. SHACL.

2.1.4. Parsing the Pre-Existing Data
The FormRenderer app can also be used to edit existing data. Before going any further,
let’s look at how the data is structured. When saving data after submitting a form, the data
is stored with a certain structure. This structure is shown in Listing 7. The ?subject can
be any URI and is used to identify the triples belonging together as an answer to a form.
To specify to which class the subject belongs, the ?targetClass variable is used. This
corresponds with the binding of the form when the form description was generated. For
example, when using SHACL as the language for the form description, the main form ele‐
ment is a sh:NodeShape and the binding is specified using the sh:targetClass
property. In the case of the Solid-UI ontology, the main form element is a ui:Form and
the binding is specified using the ui:property property. Next, the ?predicate is the
predicate of the triple, this corresponds with the binding or property of the form field.
Again, depending on the used ontology, what this property is, is defined using a different
predicate but for Solid-UI, this predicate is defined by the ui:property property on the
field element. The ?value is the value of the triple, this corresponds with the value that
was entered in the form field. This can be a literal or a URI and fully depends on the type
of the form field. Finally, many more values can be entered in the form and they all can be
saved using other triples with the same subject. This is represented in the example with
the ?otherPredicate and ?otherValue variables.

As every field in the form has a binding, the pre-existing data can be retrieved by per‐
forming a SPARQL query on the resource containing the data. This binding defines exactly
what the triple’s predicate should be with this value as object. As a result, retrieving the
pre-existing data is as simple as performing a SPARQL query on the resource containing
the data with the binding as the predicate. The SPARQL query to retrieve the pre-existing
data is given in Listing 8.

Listing 7:

?subject a ?targetClass ;
?predicate ?value ;
?otherPredicate ?otherValue .

Structure of the data saved after submitting a form.

2.2. Form Cli

Just like the previously discussed FormRenderer app, FormCli is also a form renderer
application. The difference is that this application is a command line application, meaning
that it can be used without a graphical user interface. This application is written in
JavaScript and uses the Node.js runtime environment. It uses the same library as the
FormRenderer app to query the different resources, namely Comunica. The architecture
and implementation of this application are very similar to the FormRenderer app. In partic‐

Listing 8:

SELECT ?s ?value WHERE {
?s a <${this.formTargetClass}> ;
<${field.property}> ?value.

}

SPARQL query to retrieve the pre-existing data for a certain field.

Figure 8: Screenshot of the implemented FormCli application.

ular, in terms of parsing the form description and any pre-existing data, the implementa‐
tion is exactly the same, using the same SPARQL queries as shown in Listing 5, Listing 6,
and Listing 8. A screenshot of the application is shown in Figure 8.

2.2.1. Command-Line Prompting of Form Questions
The main difference between the FormRenderer app and the FormCli app is that the
FormCli app does not have a graphical user interface. Instead, it uses a command-line in‐
terface to prompt the user with the different questions contained in the form. This is done
using the Inquirer.js [51] library. This library allows for creating a list of questions that can
be interactively asked to the user on the command line. Based on the field type, a differ‐
ent kind of prompt is used. To support easy input of dates, the inquirer-date-prompt [52]
library is used. This is a plugin for the Inquirer.js library that allows for easily asking the
user for a date in an intuitive way.
2.2.2. Lack of Authentication
The FormCli app does not support authentication with a Solid identity provider. This is be‐
cause the Solid protocol does not support proper authentication with a command-line ap‐
plication yet. Inrupt has developed a library that allows for authentication with a Solid
identity provider using the command line, but this requires prerequisites like refresh to‐
kens and client credentials to be set up manually [53]. This is beyond the scope of this
thesis and therefore the FormCli application does not support authentication. The most
important part of this application is showing that it is possible to create a form renderer
application that can be used without a graphical user interface and that does not neces‐
sarily require authentication.

3. Discussion

Both the FormRenderer app and the FormCli app are proof of concepts that were suc‐
cessfully implemented and show that it is possible to create a form renderer application in
multiple viewing environments. The source code of the FormRenderer app can be found
at https://github.com/smessie/FormRenderer and a live version of the application can be
found at https://formrenderer.smessie.com. The source code of the FormCli app can be
found at https://github.com/smessie/FormCli. The same form description resource can be
used for both applications resulting in the same form being prompted to the user. Only the
layout will differ as the FormRenderer app uses a graphical user interface in HTML and the
FormCli app uses a text-based command-line interface. In addition, the FormCli applica‐
tion also shows that a vocabulary such as Solid-UI does not depend on HTML to be used
to represent elements.

The first research question was: “How can machines be controlled in a declarative way
to create forms for producing RDF in multiple viewing environments (such as the web
and text-based via a command line)?”. The FormRenderer app and the FormCli app are
apps in different viewing environments and thus demonstrate that it is possible to create a
form renderer application in multiple viewing environments. The source code shows how
this can be done with the use of SPARQL queries on the declarative form description exe‐
cuted by the Comunica query engine. The form was described in a declarative way as the

https://github.com/SBoudrias/Inquirer.js
https://github.com/SBoudrias/Inquirer.js
https://github.com/haversnail/inquirer-date-prompt
https://github.com/haversnail/inquirer-date-prompt
https://github.com/smessie/FormRenderer
https://github.com/smessie/FormRenderer
https://formrenderer.smessie.com/
https://formrenderer.smessie.com/
https://github.com/smessie/FormCli
https://github.com/smessie/FormCli

display part is fully described using the already existing Solid-UI ontology. By making form
descriptions portable and not tight to one rendering environment or one rendering logic,
machines can be controlled to create forms for producing RDF in multiple viewing envi‐
ronments. The form description describes in a declarative way what should be displayed
and what should happen in case of a certain action. Because this is described in a
machine-readable way using RDF, a machine can interpret this and execute the right ac‐
tions.

Some user feedback was gathered as an evaluation of the built applications. As they in‐
volve the more complete applications as extended in the next chapter, the full and in-
depth discussion of the user feedback is given at the end of that chapter. However, it is
worth mentioning that all participants successfully managed to fill in a form that was ren‐
dered from such a form description using the FormRenderer app. They mentioned that the
form was easy to understand and that they did not notice that Linked Data and Solid were
used in the background. This shows that describing the form in a declarative way is a
working approach to creating forms for producing RDF in multiple viewing environments.

Chapter 6: Schema Alignment and Footprint Tasks
The second research question is: “How can machines be controlled in a declarative way

to perform schema alignment and footprint tasks by the use of reasoning?”. This ques‐
tion will be answered in this chapter through the implementation of a series of applications
that perform reasoning tasks related to schema alignment and footprinting. First, the ar‐
chitecture of the applications will be explained. An approach to this architecture will then
be presented as a bridge to the application’s implementation. Then, the implementations
of the applications will be described in detail after which the applications will be evalu‐
ated. The chapter concludes with a discussion section.

Imagine a world where Alice made a to-do list written in a certain language A, and Bob
wants to display this to-do list in his own application, however, his application only under‐
stands language B. This is a problem because now Bob cannot display Alice’s to-do list in
his application. This problem can be solved by translating Alice’s to-do list from language
A to language B before displaying it in Bob’s application. This translation can be done
manually by Alice, but this is a lot of work and it is not scalable. It would be better if this
translation could be done automatically by a machine, with the use of a kind of dictionary
that translates from language A to language B. In the next section, an architecture will be
proposed that solves this problem. First, the architecture will be applied to the to-do list
example, after which the same concepts will be applied to the more complex and general
form-related apps.

1. Architecture

1.1. To-Do List Example

The user interacts with the to-do
app via the browser. The URL to the
dataset resource is necessary to be
provided to the app. This is the re‐
source that contains the to-do list
and where the user’s updated to-do
items will be saved. The to-do items
can be described in any ontology.
However, the app cannot understand
every possible ontology, so the con‐
cept of a set of N3 conversion rules
is introduced. These N3 rules are
rules which map any vocabulary to
the base vocabulary which the to-do
app can understand. It can be seen
as the dictionary that translates from
language A to language B. This way,
the app can understand any vocabu‐

Figure 9:

todo app

data
(RDF)

N3 conversion
rules

N3 inverted
conversion

rules

N3 Patch original data resource

Actor

provides

optionally provides

uses

Users interact with the to-do application by
providing a URL to a dataset resource and optionally
a set of N3 conversion rules and a set of N3 inverted
conversion rules that translate the vocabulary of the
dataset resource into the vocabulary of the to-do
application and vice versa. The to-do application
updates the dataset resource using N3 Patch
Requests.

lary that is passed to it as long as there is a set of rules that maps it to the base vocabu‐
lary. The process of mapping any vocabulary to the vocabulary that the app understands
is called a schema alignment task and belongs to the reasoning part of the three-part
view. The result of this schema alignment task is a set of to-do items that the app can un‐
derstand. When the user now uses the application to add a new to-do item or to mark an
item as done, new triples will be added to the dataset resource. These triples are in the
vocabulary that the app understands, but this is not the same vocabulary as the one of
the dataset resource. Therefore, the app needs to convert these triples back to the original
vocabulary of the dataset resource. It uses the set of N3 inverted conversion rules to do
this.

1.2. Form Generator

A form generator app is the first application in the forms flow and is used to generate an
RDF description of a form in a certain UI ontology. This application lets one intuitively cre‐
ate such a form description requiring as little prior knowledge about RDF as possible from
the user interacting with the app. By using drag-and-drop one can easily add, edit, re‐
order, and remove fields to an existing form, or of course create a new form from scratch,
using one of the supported vocabularies.

The form generator app with Solid was made as a first step to getting in touch with all
the existing technologies and getting familiar with the topic of defining forms in RDF.
Unlike the idea of the thesis, the first version of this app used only one single vocabulary
to define the whole form. However, this constraint shows that those vocabularies are
missing the ability to clearly define the actions that should happen at certain events. It
works to define how the form should look, but a way to put logic in the form was missing.
This also shows the need for the research that is being done in this thesis. Although there
was previously stated that all UI elements are defined in RDF using only one single ontol‐
ogy, the app supports multiple ontologies in which this RDF representation can be stored.
For this, when making a new form, one can choose between 3 different UI ontologies be‐
ing Solid-UI [6] by the SolidOS team, SHACL [5] by the W3C and Beeke’s RDF-Form [9].
As a form generator application, we do not want to choose the vocabulary for the user,
but we want to give the user the freedom to choose the vocabulary that suits his needs
best. It could be that the user wants to build a form using some specific vocabulary be‐
cause he wants to use the form with a specific form renderer that only supports that spe‐
cific vocabulary. Or it could be that the user needs some specifics of a vocabulary like a
min count and max count that is not present in the other vocabulary. By supporting all
three vocabularies, we impose as few boundaries as possible on the user.

In addition to describing how the form should look like in the form description, the form
generator should also be able to describe what should happen on certain events. For ex‐
ample, when the user clicks on the submit button, the form description should contain a
description of what should happen. These policies have to be defined in the form descrip‐
tion by the form generator application.

https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/

1.3. Form Renderer

The form renderer app is the second application in the forms flow and is used to render
a form. In addition to rendering the form what already existed since the previous chapter,
the form renderer app now also has to be able to execute the policies that are defined in
the form description. The process of executing these policies is called the footprint tasks
and belongs to the reasoning part of the three-part view. In this example, one kind of pol‐
icy should be defined in the form description, namely the policy that should be executed
when the user clicks on the submit button. There can be multiple different actions as part
of this policy. An action that should be executed is to send the form data to a certain URL.
This URL, HTTP method, and Content-Type are defined in the form description. Another
action that should be supported is redirecting the user to a certain URL. In this case, the
URL is also defined in the form description as part of the policy.

Just as was the case in Subsection 6.1.1, the form renderer app needs to be extended
with schema alignment tasks to be able to understand any ontology for which a mapping
to the ontology that the form renderer app understands exists. A new input parameter is
therefore needed to be able to provide the form renderer app with the set of conversion
rules.

2. Approach

2.1. To-Do List Example

The base vocabulary that the app understands is chosen to be
http://www.w3.org/2002/12/cal/ical# (cal). This is an already existing ontol‐
ogy that is used to describe events and tasks. Which is the most important is that it can
be used to describe to-do items. The exact vocabulary that the app is using is not of high
importance, as long as it can be used to describe to-do items because the whole point is
to be able to use any ontology. In the case that the user wants to use a different ontology,
the user must provide a set of N3 rules that maps the ontology to the base ontology. An
example of such a rule is given in Listing 9 where the cal vocabulary is mapped to the
ncal (https://www.semanticdesktop.org/ontologies/2007/04/02/ncal/)
vocabulary. In this example, the triple ?uri ncal:summary ?name is mapped to the
triple ?uri schema:text ?name . This means that the app will understand the ncal
vocabulary as if it was the cal vocabulary, assuming that such rules are provided for
each triple that is used in the ontology to describe a to-do item.

Next to the N3 conversion rules, the app also requires a set of inverted N3 conversion
rules to go back to the original ontology when changes are made to the to-do items. This
is e.g. when a new to-do item is added to the list, or when an item is marked as done. In
the most simple case, the inverted N3 rules will be the same as the N3 rules but with the
rule premise and the rule conclusion reversed. However, in some situations, this will not
suffice. More specifically, in the case of marking a to-do as done or not done. When using
some vocabulary, both triples should be inserted and deleted, while in other vocabularies,
only triples should be inserted or triples should be deleted as is the case with the cal
vocabulary that is used in the example to-do app.

2.1.1. Policies to Describe What Should Happen on Toggling To-Do Status
One problem that arises is that the vocabulary that the app uses only uses one single
triple with the predicate cal:completed with the DateTime as the object to describe
whether a to-do item is done or not. However, the ncal vocabulary uses two triples with
the predicates ncal:completed and ncal:todoStatus to describe whether a to-do
item is done or not. This means that in the second vocabulary, there also exists a triple
?uri ncal:todoStatus ncal:inProcessStatus in the case that the item is not
completed yet, which is not present in the first vocabulary. To phrase it differently, to go
from not completed to completed in the app vocabulary cal , only the triple
?uri cal:completed ?time needs to be inserted, while in the ncal vocabulary,
both ?uri ncal:completed ?time and
?uri ncal:todoStatus ncal:completedStatus need to be inserted, and on top
of that, the triple ?uri ncal:todoStatus ncal:inProcessStatus needs to be
deleted. This is a problem because according to the app vocabulary, there are no triples
to be deleted in this case. There are thus no triples to be used in the rule premise of a hy‐
pothetical rule to map from the app vocabulary to the ncal vocabulary, or any other vo‐
cabulary that also requires a triple to be deleted when marking a to-do item as done. This
problem calls for a more complex architecture to be able to handle this kind of situation.
To put as few limitations as possible and to tackle this problem, policies are introduced.
Policies are the second half of the reasoning part of the three-part view. They are called
the footprint tasks and describe what should happen when a certain action is performed.
In this case, the action is marking a to-do item as done or not done. These policies are
used to describe the exact changes that need to be made to the data when a to-do item

Listing 9:

@prefix cal: <http://www.w3.org/2002/12/cal/ical#>.
@prefix schema: <http://schema.org/>.
@prefix ncal: <https://www.semanticdesktop.org/ontologies/2007/04/02/ncal/>.

{
?uri ncal:summary ?name.

} => {
?uri schema:text ?name.

}.

Example of a N3 rule to go from the cal vocabulary to the ncal vocabulary.

is marked as done or not done. That is, the policies describe the exact triples that need to
be inserted and deleted.

The N3 rule in Listing 10 displays an example policy that is executed when a to-do item
is marked as done. The rule premise describes the event and the rule conclusion de‐
scribes the policy that should be executed when this event occurs. The policy also de‐
scribes the triples that need to be inserted and deleted and the subject of the triples that
need to be updated. The policy describes that the triples
?uri ncal:completed ?time and
?uri ncal:todoStatus ncal:completedStatus need to be inserted, and the
triple ?uri ncal:todoStatus ncal:inProcessStatus needs to be deleted. The
subject of the triples that need to be updated is the to-do item that is marked as done. As
can be seen, the rule premise not only contains a triple describing the event but also the
data that is used to execute the policy.

2.1.2. FnO as Policy Language
To describe policies, two languages are needed: a rule language and a policy language to
describe what actually should happen when a policy is executed. As rule language, N3 is
used. This is the same language that is used to describe the conversion rules in the
schema alignment tasks and their N3 rules do exactly what is needed. To describe the
policy, a basic version of the FnO ontology, which was described earlier under Section
3.9, is used. In the example in Listing 10, fno:Execution describes the policy as exe‐
cuting the ex:updateResource function. The function ex:updateResource is a
function that is used to update a resource in the user’s Solid pod. ex:insertTriples

Listing 10:

@prefix ex: <http://example.org/> .
@prefix cal: <http://www.w3.org/2002/12/cal/ical#>.
@prefix ncal: <https://www.semanticdesktop.org/ontologies/2007/04/02/ncal/>.
@prefix pol: <https://www.example.org/ns/policy#> .
@prefix fno: <https://w3id.org/function/ontology#>.

{
?id ex:event ex:MarkCompleted.
?id cal:completed ?completedAt.

} => {
ex:CompletedPolicy pol:policy [

a fno:Execution ;
fno:executes ex:updateResource ;
ex:insertTriples [

ncal:completed ?completedAt ;
ncal:todoStatus ncal:completedStatus

] ;
ex:deleteTriples [

ncal:todoStatus ncal:inProcessStatus
] ;
ex:subject ?id

] .
}.

Example of a N3 rule describing policy to mark a to-do item as done.

and ex:deleteTriples are extra predicates used to describe the triples that need to
be inserted and deleted and can thus be seen as arguments to the function
ex:updateResource . The subject of the triples that need to be updated is described
by the predicate ex:subject .

In this architecture, the choice was made to use FnO and not e.g. Hydra which was de‐
scribed in Subsection 2.1.5. The reason for this is that Hydra is a vocabulary that is de‐
signed to be used in the context of describing a Web API on the server side. Its intended
use is to describe the operations to the client that can be performed on a resource, and
the data that is returned by these operations. However, this is not what policies are.
Policies should describe the client-side operations that need to be performed when a cer‐
tain event occurs. Furthermore, this can be much more than just performing an HTTP re‐
quest to the server. Hydra does not allow to describe something else than an HTTP re‐
quest, while FnO allows to describe any kind of operation. Next to that, FnO is being de‐
veloped by people in the same research group as where this thesis was written. This is
also an additional plus that only strengthens the choice for FnO.

2.2. Forms Flow

Because there should be put as few restrictions as possible on the form description, the
form renderer app should be able to render any form description using any ontology. As it
is unfeasible for an application to understand all the different ontologies that exist and will
ever exist, another approach is needed. The concept of a letter and a dictionary is used to
solve this problem. One vocabulary is chosen as the base vocabulary understood by the
form renderer application and then together with the form description described in this vo‐
cabulary, a dictionary or set of N3 conversion rules is passed along. These N3 rules are
rules which map any vocabulary to the base vocabulary. This way, the form renderer can
understand any vocabulary that is passed to it as long as there is a dictionary that maps it
to the base vocabulary.

2.2.1. Policies to Describe What Should Happen on Submission
To describe what should happen when the user submits the form, policies are used.
Policies are the second half of the reasoning part of the three-part view. They are called
the footprint tasks and describe what should happen when a certain action is performed.
In the case of a form, the action is submitting the form. This action is defined in RDF as
the triple ?id ex:event ex:Submit. . Just as with the policies to describe what
should happen when a to-do item is marked as done in Subsubsection 6.2.1.1, the poli‐
cies to describe what should happen when a form is submitted are also described with N3
as rule language and FnO as policy language. This use case involves two specific types of
policies. An example is shown in Listing 11. However, the generic structure from which
they are built allows other types of policies to be easily defined. The fno:executes
predicate is used to describe which function should be executed or thus what type of pol‐
icy it is. The ex:httpRequest , of which the first rule is an example, is a policy that de‐
scribes that an HTTP request should be performed. The other triples defined in the policy
describe the arguments that are needed to perform the HTTP request. The ex:method
predicate describes the HTTP method that should be used, the ex:url predicate de‐

scribes the URL to which the request should be sent, and the ex:contentType predi‐
cate describes the content type of the request. The ex:redirect policy is a policy that
describes that the user should be redirected to another page after the form is submitted
successfully. The ex:redirect policy only needs one argument, which is the URL to
which the user should be redirected. The second rule is an example of such a type of pol‐
icy.

3. Implementation

3.1. To-Do App With Solid

The next step is to apply this reasoning in the browser to a concrete, but still simple, ex‐
ample application. For this, a simple to-do application is created that uses the Solid pro‐
tocol to store the data in a Solid pod. A screenshot of the application is shown in Figure
10. The application is created using the Vue framework and the Vite build tool so the same
workaround to make Comunica work with Vue is used as described earlier in
Subsubsection 5.2.1.1. The different input resources as mentioned earlier in Subsection
6.1.1 are passed to the application by using their URL. The application will then fetch the
data from the given URL. Authentication is implemented in the same way as the
FormRenderer app as discussed in Subsubsection 5.2.1.2. The user can log in via the
Solid IDP and the application will then fetch the data from the given URL which can be a
private resource that the user has access to in a certain Solid pod.

Listing 11:

@prefix ex: <http://example.org/> .
@prefix pol: <https://www.example.org/ns/policy#> .
@prefix fno: <https://w3id.org/function/ontology#>.

{
?id ex:event ex:Submit.

} => {
ex:HttpPolicy pol:policy [
a fno:Execution ;
fno:executes ex:httpRequest ;
ex:method "POST" ;
ex:url <https://httpbin.org/post> ;
ex:contentType "application/ld+json"

] .
} .
{
?id ex:event ex:Submit.

} => {
ex:RedirectPolicy pol:policy [
a fno:Execution ;
fno:executes ex:redirect ;
ex:url <https://smessaert.be>

] .
} .

Example of N3 rules describing different policies to be executed on the form
submission event.

3.1.1. Parsing the Data to the To-Do Items
As the to-do application only understands the cal vocabulary, the data needs to be
aligned to this vocabulary before it can be used by the application. Therefore, schema
alignment tasks come into play. This is done by applying the N3 conversion rules to the
data. This is implemented by using the N3 rules as a query and the to-do resource data as
data to execute the query on. This reasoning is then executed in the browser using the
EYE-JS library and the results are then used by the application as the input data for the
to-do items. However, just like Comunica, EYE-JS did not work out of the box with Vue,
so some workarounds had to be made to make it work which will be described here. The
problem lies in the fact that ES2020 is not fully supported by default in Vite 3 yet while
EYE-JS requires ES2020. Vite 3 is however the build tool used by Vue to build the applica‐
tion. To add support for ES2020 in Vite 3, this target had to be explicitly configured in the
vite.config.js file as shown in Listing 12 [54].

Figure 10: Screenshot of the implemented Todo App with Solid.

To go from the data to the to-do items, the data needs to be parsed. For this, a
SPARQL query is used on the data to get the to-do items. To execute this query, the
Comunica query engine is used. Comunica was earlier described in Section 3.7. All
Comunica queries are executed in the browser with input data that is passed as text to
the query engine. The data is fetched from the given URLs separately using the authenti‐
cated session because this allows for manipulations of the data first, such as the afore‐
mentioned schema alignment tasks, before passing it to the query engine.

3.1.2. Adding New To-Do Items
Adding new items can be implemented quite straightforwardly by generating the new
triples that should be added to the data resource. However, just like the data needs to be
aligned to the cal vocabulary when loading into the application, the new triples also
need to be aligned to the vocabulary of the data set while writing back to the resource.
This is an inverted alignment for which the inverted N3 conversion rules should be used.
This is the third and last input resource that is passed to the application. Reasoning with
the help of EYE-JS is used for this as well. The work is not done after describing which
triples should be inserted and deleted. These updates need to be performed as well. The
new triples are added to the data resource by using a N3 Patch request as explained in
Subsection 3.5.1. To perform this N3 Patch, the authenticated session retrieved from the
Solid IDP is used. First, a SPARQL Update [55] request was considered instead of N3
Patch as this used to be the way to go to update data in a Solid pod. It is often used in
existing applications but although it is still supported by most if not all Solid servers, it is
no longer part of the Solid specification. The only official way to patch data in a Solid pod
is now using N3 Patch. In recognition of the importance of maintaining compliance with
the latest standards, the decision was thus made to use N3 Patch instead of SPARQL
Update.
3.1.3. Marking To-Do Items as Done or Not Done
To implement toggling to-do statuses, first, the triples are formed that will function as the
N3 rule premise of the rule as shown in Listing 10. These two triples will be used as data,

Listing 12:

import { defineConfig } from 'vite';
import vue from '@vitejs/plugin-vue';

// https://vitejs.dev/config/
export default defineConfig({
plugins: [vue()],
optimizeDeps: {
esbuildOptions: {
target: ['es2020', 'safari14'],

},
},
build: {
target: ['es2020', 'safari14'],

},
});

Configuration changes in vite.config.js to make EYE-JS work with Vue [54].

https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/

and the N3 rules that include this rule with the policy are altogether used as the query for
the reasoning with EYE. When the data vocabulary is the same as the app vocabulary, i.e.
cal , the user does not have to provide N3 conversion rules and there are thus no rules
to use as the query. That is why the implementation provides default triples to be inserted
and deleted as well. In the case of marking an item as done, the default to-be-deleted
triples are empty, and the default to-be-inserted triples are equal to the
?id cal:completed ?date triple. In the case of marking an item as not done, this is
the other way around with the default inserted triples being empty. These default triples
are then used as the body of the N3 Patch request, otherwise the triples resulting from the
reasoning task are being used. Just as the N3 Patch for adding a new to-do item is au‐
thenticated, the 3N Patch for toggling this to-do status is also authenticated. The policy
retrieved from the rule closure is parsed using a SPARQL query with the help of Comunica
in the same way as the to-do items were initially parsed – although with a different
SPARQL query, of course.

3.2. Form Generator

The FormGenerator application provides an implementation of an app that allows users
to build a form description. Furthermore, it can also be used to load an existing form de‐
scription and edit it. As this app only functions as a proof of concept, only a limited selec‐
tion of form elements is supported. Only the following form elements are supported: text
input, text area (if supported by the ontology), checkbox, date field, and select. However,
more field types could be added in the same way as the ones that are already supported.
A screenshot of the application is shown in Figure 11.

3.2.1. Ember
This app is developed using EmberJS using Redpencil’s ember-solid library and rdflib.js
(see Section 3.8) which makes it easy to read from and write back to resources in a user’s
Solid pod just by interacting with JavaScript objects as EmberJS models. To style the lay‐
out of the application, the well-known CSS framework Bootstrap 5 is used. The drag-and-
drop functionality is implemented using the ember-drag-drop add-on [56]. Authentication
is handled by ember-solid as well and when the user browses to the app, he is redirected

Figure 11: Screenshot of the implemented FormGenerator application.

https://github.com/mharris717/ember-drag-drop
https://github.com/mharris717/ember-drag-drop

to the Solid IDP to log in.
Just as changes to the configuration of the Vue app were needed to make Comunica

and the EYE reasoner work with Vue, changes to the configuration of the Ember app were
needed to make Comunica and the EYE reasoner work with Ember. To help people who
want to reproduce this thesis, or to do similar things, the changes that were made to the
configuration of the Ember app in ember-cli-build.js are listed below in Listing 13.

3.2.2. Tackling Problems With N3 Rules
However, as easy as it is to use ember-solid for basic Solid functionality, as hard it is to do
more sophisticated things that do not belong to typical operations. These limitations be‐
came apparent when implementing the part of defining the N3 rules for the policies. First,
let’s state two things. First, it is known that the rules defining the policies are stored in the
same resource as the rest of the form description, so only one URL must be provided as
input to the form renderer. Second, rdflib.js is used by ember-solid to parse the form de‐
scription, and it is known that rdflib.js does not support N3 rules. Although rdflib.js’ parser
to parse resources is called the n3parser, it is unable to parse N3 rules. The problem goes
further than this, as it is unable to parse the rest of the resource as soon as it contains N3
rules. This is not the only problem with N3 rules though; inserting and deleting N3 rules in
and from a resource is unable with both SPARQL Update and N3 Patch. This is because
N3 rules are not standard triples, but a N3 statement where the subject and object consti‐
tute quoted graphs that are not supported in any of the former and current Solid data ma‐
nipulation protocols [2].

To tackle both problems, a similar combined type of solution to both problems has been

Listing 13:

'use strict';
const EmberApp = require('ember-cli/lib/broccoli/ember-app');

module.exports = function (defaults) {
let app = new EmberApp(defaults, {
autoImport: {
webpack: {
node: {
global: true,

},
resolve: {
fallback: {
fs: false,
crypto: false,
path: false,

},
},

},
},

});
return app.toTree();

};

Configuration changes in ember-cli-build.js to make EYE-JS and Comunica work with
Ember.

used. The only way to insert and delete N3 rules appears to be using an HTTP PUT re‐
quest with the newly updated resource as the body. To insert a new N3 rule, the resource
is retrieved, the new N3 rule is locally added to the resource, and the resource is PUT
back to the server. In the same way, to delete or update an existing N3 rule, the resource
is retrieved, the N3 rule is adjusted or removed from the resource, and the resource is PUT
back to the server. To implement this, on retrieving the resource, the N3 rules have to be
parsed so it is known which N3 rules are already present in the resource to be able to up‐
date or delete them. This is done by using a RegEx to match N3 rules in the resource. The
RegEx used to match N3 rules is shown in Listing 14. The RegEx is not perfect, but it
works for the current use case. It is not perfect in the sense that it will also match N3
statements that use a different namespace than the log vocabulary used in the N3 rules’
predicates. That is because the RegEx does not check the prefix in the case that
:implies is used, allowing a user to use a different prefix for the
http://www.w3.org/2000/10/swap/log# namespace. However, one can see this
even as a feature, as the N3 parser will not only have a problem with actual N3 rules but
also with other N3 statements that look like N3 rules – statements with the same syntax
but another predicate. To make the parser work, these N3 statements should be filtered
out before the N3 parser is called as well. Next to the log:implies predicate, the
RegEx also supports matching N3 rules which use the => syntactic sugar as well as the
full predicate without the use of a prefix.

To fix the other problem where the N3 parser is unable to parse the rest of the resource
as soon as it contains N3 rules, the previous solution is further extended. Because ember-
solid fetches the resource on its own, a modified version with the rules filtered out cannot
be passed along to ember-solid. To, however, achieve this behavior, some extra intermedi‐
ate steps are performed. They are listed below.

1. The resource is fetched (GET) in the app as was done in the former solution.
2. The N3 rules are filtered out using the RegEx from Listing 14.
3. The filtered resource is PUT back to the server.
4. The resource is fetched again, this time without the N3 rules, by ember-solid.
5. Ember-solid uses this modified resource to parse the form description.
6. The resource is fetched (GET) again from the server.
7. The original resource including the N3 rules is restored from the fetched resource
by adding the N3 rules and missing prefixes and is PUT back to the server.
8. The user can now interact with the form.

When ember-solid wants to store changes to the resource, the resource on the server

Listing 14:

/\{[^{}]*}\s*(=>|[^\s{}:]*:implies|
<http:\/\/www.w3.org\/2000\/10\/swap\/log#implies>)\s*{[^{}]*}\s*\./g

RegEx to match N3 rules.

must be the same as it was when it was fetched initially. Otherwise, rdflib.js will complain.
However, the resource on the server is not the same as it was when it was fetched, as the
N3 rules were filtered out and then added back to the resource on the server after it was
loaded by ember-solid. To get around this, the same steps are performed again before the
changes are patched to the server. Step 5 then becomes: ember-solid uses rdflib.js to
perform a SPARQL Update query to update the resource with the changes made by the
user, the other steps remain the same. While doing step 6 in the second scenario, adjust‐
ments made by the user while interacting with the form description are then made concur‐
rently to the rules while adding them back to the resource. Doing so saves an extra PUT
request to the server, as the rules have to be added back to the resource anyway. The
step of updating the correct rule out of all possible rules existing in the resource is imple‐
mented by filtering out any existing N3 rule defining the policies that the user can enter in
the FormGenerator app. Then, the rules formed out of what the user entered in the
FormGenerator app are added to the resource, regardless of whether the user made ad‐
justments to it or not because any existing rule will be filtered out anyway.

Step 7 includes restoring the prefixes used in the N3 rules, as these prefixes might be
no longer defined in the resource if the prefix is not used anywhere else in the resource.
This issue occurs after the resource is updated by rdflib.js, in this case, this is an un‐
wanted side effect of rdflib.js that is overcome by restoring the prefixes. To associate the
correct namespaces with the prefixes, the prefixes defined in the original resource from
step 2 are used. In fact, not only the rules are matched in step 2, but also the prefixes are
matched and stored in a variable. In step 7, all prefixes matched in step 2 are added back
to the resource if they do not exist in the refetched resource from step 6.

3.2.3. Parsing the Policies
In the previous section, step 2 was defined as filtering out the N3 rules from the resource.
These rules potentially contain the policies that the user can define in the FormGenerator
app. To allow the user to adjust these policies, on loading an existing form description, the
policies should be parsed and entered into the appropriate input fields. The first step was
already described, which is filtering out the N3 rules from the resource. Now, out of all
these rules, the rules that define the relevant policies should be selected. This is done by
performing a reasoning step on each rule individually to find out which rules define a pol‐
icy. For this, the EYE reasoner in the browser is used. The input data is set as the rule
premise that the wanted policy should have, i.e.
_:id <http://example.org/event> <http://example.org/Submit> . . The
rule itself is set as the query for the reasoning step. In case the rule is relevant, the rea‐
soner will output the desired policy as a rule conclusion. Next, this policy is passed along
to the Comunica engine to parse it using the SPARQL query shown in Listing 15. This out‐
puts the wanted values as JavaScript objects, which are then used to fill in the input fields
in the FormGenerator app. The method and content type are marked as optional in the
query, as they are only required in the case of an HTTP request policy. The other possible
policy is a redirect policy, which does not require these values. By defining these values
as optional, the query can be used for both types of policies. This already shows that the

query might undergo some changes in the future, to support more types of policies.

3.2.4. Prefix.cc
When building the form, the user will have to specify the bindings for each field. The bind‐
ing is a URI that uniquely identifies the field. This URI will be used to identify the field
when the form is rendered. To ease the process of creating a binding, one can enter the
binding using a prefix and then it will automatically be expanded to the full URI using the
prefix.cc API. For example, if you enter ex:MyField as the binding, it will automatically
be expanded to http://example.org/MyField . If prefix.cc does not recognize the
prefix, the full URI can still be entered manually.

3.3. Form Renderer

Now that a form description has been created, it can be rendered to the user. The
FormRendered app as was introduced earlier in the previous chapter is used and further
extended to support these new features. The third input URL, previously ignored for the
moment, is now used to provide the conversion rules for the schema alignment tasks. All
principles that are discussed below also apply to the FormCli app, as it is just another im‐
plementation of a form renderer app in another viewing environment. They will not be dis‐
cussed separately because these changes do not significantly affect the layout or interac‐
tion with the user, only the way the application works underneath in terms of interaction
with the data, which is the same for both apps.

3.3.1. Parsing the Form Description
The idea is that the user can specify a form description using any vocabulary, and then
specify conversion rules to convert this form description to the vocabulary that the app
understands. Adding this feature requires changes to the implementation before the form
description can be parsed, as described in the previous chapter. That is because when
parsing the form description, the assumption is made that the form description is already
in the vocabulary that the app understands because the SPARQL queries to parse the
form description are written in this vocabulary. In the case that N3 conversion rules are
specified, these rules are applied to the form description. This is done by using the EYE
reasoner in the browser to perform a reasoning step on the form description with the N3

Listing 15:

PREFIX ex: <http://example.org/>
PREFIX pol: <https://www.example.org/ns/policy#>
PREFIX fno: <https://w3id.org/function/ontology#>

SELECT ?executionTarget ?method ?url ?contentType WHERE {
?id pol:policy ?policy .
?policy a fno:Execution .
?policy fno:executes ?executionTarget .
?policy ex:url ?url .
OPTIONAL { ?policy ex:method ?method } .
OPTIONAL { ?policy ex:contentType ?contentType } .

}

SPARQL query to parse the policies.

https://prefix.cc/
https://prefix.cc/

conversion rules as query data. This translation step is performed in the same way as was
the case for the to-do app example explained in Subsubsection 6.3.1.1: the form descrip‐
tion is used as data and the conversion rules are used as the query for the reasoning step.
This outputs the translated form description that the app is supposed to understand and
is to be used for rendering the form.
3.3.2. Determining What Subjects for the Data to Use
In the case that a resource is passed along containing pre-existing data to fill into the
form, the subject URI to use when writing the new data is easy to decide. This existing
subject URI can simply be used again. However, in the case that no resource is passed
along, deciding on the subject URI to use is not as easy. Also in the case that multiple
subjects are contained in the resource that both conform to the structure and target class
of the form, as was described earlier in Subsubsection 5.2.1.4, the subject URI to use is
not clear. To solve these problems, multiple possibilities were considered.

1. a new random UUID is generated and used as the subject URI using the
urn:uuid: namespace [57]
2. the user is asked to enter a subject URI
3. the URI used as the URL in the HTTP Request policy is used as the subject URI
4. one of the existing subjects in the data resource is used as the subject URI
5. a blank node is used instead of a subject URI
6. define the subject URI to use in the form description

Using blank nodes is mostly not the solution. This would lead to not being able to point
to the data using a URI, as this URI does not exist. This would also make it impossible to
refer to the data from other resources. Using the URI to which the data is posted is also
not a good solution, as this URI is not necessarily meaningful or even a unique URI.
Consider for example the case that the data is posted to a generic endpoint like
https://example.com/api/submit-form . There is no guarantee that this URL is
unique and it thus should not be used as the subject URI. Defining the subject URI to use
in the form description is also not an ideal solution, because the different ontologies used
to describe forms do not all have a property to define the subject URI to use. This would
mean that an extra property would have to be added to the form description, one that is
not defined in the ontology and thus not expected by all different apps that build or use
the form descriptions. This leads to options 1, 2, and 4 as the remaining options.

Using a random UUID is a good solution, as it is guaranteed to be unique and it is a
perfect solution for the case that no data is passed along. It can be used perfectly as a
default subject URI in case the user does not know which subject URI to use. Asking the
user to enter a subject URI is also a good solution, as it allows the user to enter a mean‐
ingful subject URI himself. However, only supporting this option would make it require the
user to know what a subject URI is and how to enter it. This would make it very hard for a
user to use the form renderer app without any knowledge of the Semantic Web. This is to
be avoided, as the goal is to make the form renderer app as easy to use as possible for
everyone. Using one of the existing subjects in the data resource is also a good solution,
especially in the case that there is only one such subject. This would also be the expected

behavior when editing data, as the user would expect the data to be saved to the same
subject as it was retrieved from. However, when there are multiple subjects in the data re‐
source, something should be done to decide which subject to use. This could be done by
asking the user to select one of the subjects, but this would require the user to know what
a subject is and how to select one.

By going through all the options, it becomes already clear that there does not seem to
be a perfect solution. However, the best solution seems to be to combine the different op‐
tions and use a random UUID as the default subject URI, but allow the user to select one
of the existing subjects in the data resource or enter a subject URI himself. This way, the
user can enter a meaningful subject URI himself, but if he does not know what a subject
URI is, he can just use the default subject URI if there is no data passed along that con‐
tains a pre-existing subject URI.

3.3.3. Parsing and Executing the Policies on Submit
When the user submits the form, the policies defined in the form description should be
executed. This is done by first parsing the policies from the form description. This is done
the same way as it was done in the FormGenerator app described in Subsubsection
6.3.2.3 by first using reasoning to obtain the relevant N3 rules containing the policies as
rule conclusions and then parsing the policies using the SPARQL query given in Listing
15. Next, the parsed policies are executed. Currently, HTTP request policies and redirect
policies are supported. The policies are executed by looping over the list of parsed poli‐
cies and performing the corresponding HTTP request or redirect. In the case of an HTTP
request policy, the request is immediately performed using the fetch API. In the case of a
redirect policy, the specified URL is kept in memory and the user is redirected to this URL
after all policies have been executed. Because of this, the user will be redirected to the
last specified URL in the list of policies. It, however, does not make sense to specify multi‐
ple redirect policies, so this is not a problem.

As the body of both the HTTP request and redirect policies, the data entered by the
user is passed along as Turtle. The Turtle data is formed by looping over all fields in the
form and generating a triple for each entered value taking into account the type of the in‐
put field. In a later stage, it could be a nice feature to take into account the content type
specified in the policy and to pass along the data in the specified content type.
Nonetheless, as this does not belong to the goal of this thesis, stuff is kept simple and the
data is always passed along as Turtle. After all, the point here is to show that policies can
be executed based on the declarative form description.

One of the underlying ideas of the thesis that was mentioned in the introduction was the
fact that the users filling in the form should be able to decide where the data is stored. In
this architecture, this means that the user should be able to influence the URL used in the
HTTP Request policies. This was also considered in the implementation of the
FormRenderer app. More precisely, the idea of displaying the defined policy URL next to
the submit button of the form was considered to allow the user to customize it. However,
multiple such HTTP Request policies can exist in the form description and displaying all of

them would make the form look very cluttered. In a more general scenario where the user
is asked to fill out the form, the person taking the form will decide where the data is
stored, not the person filling out the form. Therefore, it was decided not to implement this
feature in the FormRenderer application. After all, the form description resource is avail‐
able to the user filling out the form, so the user can still edit the form description resource,
change the policy URL to their liking, and use that changed form description resource to
render the form.

3.3.4. Schema Alignment Example
For completeness, an example will be discussed here to show how the schema alignment
works. Consider the form description given in Appendix B under Section B.1. This is a
form description written using the SHACL ontology. Assume now that we are in a similar
scenario as the FormRenderer application. This means that we only understand the Solid-
UI ontology and the form description is written using the SHACL ontology. To be able to
render the form, we first need to align the SHACL ontology with the Solid-UI ontology.
This is done by using the N3 rules given in Appendix B under Section B.2. This is an ex‐
ample of N3 conversion rules that can be used to convert a form description written using
the SHACL ontology to a form description written using the Solid-UI ontology. This exam‐
ple is not complete, but it is sufficient to illustrate the idea and supports all form fields and
the options that are used in the FormGenerator and FormRenderer applications. By apply‐
ing these N3 conversion rules to the form description, we obtain an equivalent form de‐
scription written using the Solid-UI ontology. The resulting form description in the Solid-UI
ontology is given in Appendix B under Section B.3. All entered values are still represented
in the new form description, but the triples are now described using the Solid-UI ontology
instead of the SHACL ontology.

4. Evaluation

In this section, the proposed architecture and implementation in order to answer the re‐
search question will be evaluated. One way of doing this is by having a look at the proof
of concept apps that were built as part of this thesis to research the feasibility of the pro‐
posed architecture in practice. In what follows, the user experience of the two apps that
are part of the more complex scenario will be discussed. These are the apps that are rele‐
vant to the end goal with the three-part view on Solid Web Forms, being the
FormGenerator and the FormRenderer app. The FormCli app is not considered as this is
just another more complex version of the FormRenderer app where one interacts with the
app through the command line instead of a graphical user interface. This requires the user
to have a certain level of technical knowledge which is an assumption that does not want
to be made here for the form rendering part.

This user experience was evaluated by letting people interact with the apps and asking
them to give feedback on their experience. For this, the users were provided with a sce‐
nario explaining what they were supposed to do with the app. This evaluation was split up
into two parts, one for the FormGenerator app and one for the FormRenderer app.

4.1. Form Generator

The scenario for the FormGenerator app can be found in Appendix A under Section A.1.

Next to this written scenario, the users were also provided with a logged-in version of
the FormGenerator app on https://formgenerator.smessie.com with the URL for the form
location already filled in with the use of the ?form= query parameter. Lastly, the users
were also provided with a list of bindings that they could use to create the form. Here, the
assumption was thus made that users interacting with this app would have some knowl‐
edge of Linked Data and the Semantic Web.

This scenario was used to evaluate the FormGenerator app with 8 users. Only people
with some technical background were asked to participate in this evaluation. The feed‐
back that was received from these users was that the app was easy to use, especially be‐
cause of the drag-and-drop functionality. Also, the ability to reorder the fields by the use
of drag-and-drop was seen as a nice feature. However, some noted that it would be help‐
ful to also be able to drop a field directly in between two other fields. Multiple respondents
mentioned that it would be nice to have a live preview of the form while creating it.

Even though all the positive experiences, the users did not like the fact that they had to
use the bindings to create the form. They did not understand what these bindings were
and even though the list of bindings they could use was provided, some expressed diffi‐
culties in finding the right binding for the right field. They rightly noted that as a restaurant
owner, they don’t want to know what bindings are. Additionally, after mistyping the bind‐
ing, someone expressed the wish to have some sort of validation or auto-completion on
the bindings to make sure that the binding is correct. While this would be a nice feature to
have, this would require having all bindings be defined and then having the app check if
the binding is correct. For cases where the binding definition does not exist, e.g. when the
ex: namespace is used, this would not be possible. By just returning a warning mes‐
sage when the binding is not correct, the user can still continue to create the form, so this
should not be a big issue. This, together with automatically suggesting a binding based on
the entered field name, is out of scope for this thesis but is a useful idea for future work.
Next to bindings, also the choice of vocabulary was confusing for the users. They did not
understand why they had to choose between SHACL, Solid-UI, and RDF-Form and on
what this choice was based. This is a valid remark as this choice is not based on anything
and is just a remnant of the initial idea to have the FormGenerator app be able to generate
forms based on different vocabularies. However, this option could still be useful for people
with more technical knowledge that want to create a form based on a specific vocabulary.

When building a form for the SHACL vocabulary, marking a field as required and allow‐
ing multiple answers is done by specifying the sh:minCount and sh:maxCount prop‐
erties. Asking users to enter the “min count” and “max count” for a field was confusing to
them because they did not know what it meant. Lastly, some people noted that they ex‐
pected the possibility to enter a radio button field to be able to select the score for the re‐
view. The initial idea was that this should be defined using a dropdown field, but using a

https://formgenerator.smessie.com/
https://formgenerator.smessie.com/

radio button field would indeed be more intuitive for the user. As these apps are just a
proof of concept with only a limited amount of field types implemented to show the feasi‐
bility of the proposed architecture, the radio button field is one of the field types that is not
implemented yet. However, this is something that should be added in the future when
building a more complete version of the FormGenerator app. Therefore, this point of feed‐
back was, even though it was a valid remark, not considered a negative point for the
FormGenerator app. Overall, the feedback on the FormGenerator app was positive and 6
out of the 8 users were able to create the form without any issues besides the difficulties
with the bindings. Note however that only users with some technical background were
asked to participate in this evaluation. A better way of handling the bindings more ab‐
stractly is something that should be considered for future work.

4.2. Form Renderer

The scenario for the FormRenderer app can be found in Appendix A under Section A.2.

The assumptions made for this scenario were the following:

• The user has a Solid Pod and is logged in to the FormRenderer app. This was done
by providing the users with a logged-in version of the FormRenderer app on
https://formrenderer.smessie.com.

• The conversion rules to go from the form description vocabulary to the form render‐
ing app vocabulary (Solid-UI) exist and are defined in the FormRenderer app. This
was done by providing the URL to the conversion rules resource by using the
?rules= query parameter.

• The form description resource exists and is accessible by the FormRenderer app.
This was done by providing the URL to the form description resource by using the
?form= query parameter.

This scenario was then used to evaluate the FormRenderer app with 11 users. No dis‐
tinction was made among users; people without a technical background also participated
in the evaluation. The feedback that was received from all these users was that the app
was straightforward to use, easy to use, and clear. There were no real critical issues men‐
tioned, as to what the users get to see, it is a very simple app that does what it is ex‐
pected to do. Extra points for improvement given by the users were the idea of automati‐
cally hiding the input panel when the required input fields were already filled in via the URL
query parameters to reduce the amount of technical information shown to the user. After
all, it does not make sense to show the input fields for the form description resource and
the conversion rules if you send it to someone who just wants to fill in the form specified
by the sender. Furthermore, someone noted that they expected a multi-line text field to be
used for the review field instead of a single-line text field. However, this was a conse‐
quence of the fact that the form description was built using the SHACL vocabulary and
the SHACL vocabulary does not allow one to define a multi-line text field. This also imme‐
diately shows empirically by people that SHACL is a vocabulary made to express valida‐
tion and not to describe the display part, as pointed out earlier. In the case of using a vo‐

https://formrenderer.smessie.com/
https://formrenderer.smessie.com/

cabulary to describe the display part, an ontology made for that purpose should be used,
such as Solid-UI. Some mixed feedback was given on the date field. Some people liked
the fact that the date field already had the separating dashes in it, while others did not like
that they had to click another time on the calendar icon to be able to enter a date via the
popup calendar. Furthermore, one person noted that it was unclear what the Subject URI
was for, and even though for people without that knowledge there is always at least one
valid suggestion that can be used, it can be confusing because they do not know what to
choose. Besides that, the users did not notice that the app was using Solid and Linked
Data behind the scenes and this is exactly the goal of the FormRenderer app. People who
were given a form described using the SHACL vocabulary were unaware that schema
alignment tasks were being performed behind the scenes. Lastly, one person noted that a
“Copy URL” button next to the load button, after you entered the input fields, would be a
nice addition to the app. To conclude, the feedback on the FormRenderer app was posi‐
tive and all the participating users were able to fill in the form without any issues. The app
was straightforward and users did not realize that Solid and Linked Data were involved
behind the scenes. This is a good thing as it means that the app is easy to use for people
without any knowledge of Solid and Linked Data.

5. Discussion

The concept of schema alignment tasks was successfully introduced and demonstrated
by the To-Do App. The source code of this app can be found at https://github.com
/smessie/TAS and a live version of the app can be found at https://tas.smessie.com. Now,
Bob can translate Alice’s to-do list into a language that his to-do app understands by just
providing the app with a set of conversion rules. The translation will then be done auto‐
matically thanks to the reasoning. This concept was then later also successfully applied to
the FormRenderer app allowing any form description to be inputted into the app and be
rendered by the app as long as a conversion rules resource exists and is provided that
can translate the form description into the form rendering app vocabulary.

Furthermore, the concept of footprint tasks was successfully introduced and demon‐
strated by the FormGenerator app. The source code of this app can be found at
https://github.com/smessie/FormGenerator and a live version of the app can be found at
https://formgenerator.smessie.com. Support for these was also added to the
FormRenderer and FormCli apps. Because of this, actions that need to be performed in
case of certain events can be defined in a declarative way in the form description allowing
machines to perform these actions automatically. This was demonstrated by the form ren‐
derer apps that automatically store the form data in a Solid pod by performing the HTTP
request as defined in the form description, followed by a redirect of the user to the URL
that was defined in the policy in the form description as well. However, no standardized
ontology to describe these events and actions exists yet. The FnO ontology was used to
describe that an action should be performed, but the action itself, like the event, was not
described in a standardized way. This is something that should be considered for future
work.

https://github.com/smessie/TAS
https://github.com/smessie/TAS
https://github.com/smessie/TAS
https://github.com/smessie/TAS
https://tas.smessie.com/
https://tas.smessie.com/
https://github.com/smessie/FormGenerator
https://github.com/smessie/FormGenerator
https://formgenerator.smessie.com/
https://formgenerator.smessie.com/

The user experience evaluation made clear that the FormGenerator and FormRenderer
apps are meant for different types of users. This was also the thought beforehand but dur‐
ing the evaluation, this became extra clear. The FormGenerator app was only evaluated by
people with a technical background, yet they still had minor difficulties with understanding
everything. The FormRenderer app was evaluated by people with and without a technical
background and none of them had any difficulties with understanding the app.

The research question for this thesis was the following: “How can machines be con‐
trolled in a declarative way to perform schema alignment and footprint tasks by the use
of reasoning?”. Given the successful implementation of the applications that demonstrate
how to define policies and how to perform schema alignment and footprint tasks, in addi‐
tion to the positive results of the user experience evaluation, the research question can be
answered in the affirmative. Nonetheless, the results of these applications show the need
for further research to further improve the perceived accessibility issues regarding bind‐
ings in order to make these technologies optimally available to all people without expect‐
ing them to have prior technical knowledge.

Chapter 7: Uniform Reasoner Interface
Reasoning is a core part of the proposed architecture. Both schema alignment and

footprint tasks, as discussed in the previous chapter, require reasoning to be performed.
Every use case differs from the other and therefore requires a different way of executing
reasoning. Some use cases will benefit the most from reasoning in the browser, while oth‐
ers will be too computationally heavy requiring them to be executed remotely. Some use
cases will be more performant when using a specific reasoner, while others will be more
performant when using another reasoner implementation. Because of the importance of
allowing developers to easily switch between reasoners as their use case changes, a uni‐
form interface is needed to abstract away the differences between the different reasoners.
This chapter will discuss the design and implementation of such a possible interface by
trying to find an answer to the third and last research question of this thesis. This question
was: “How can an abstraction be made to run reasoning in the browser or remotely?”.
Just as was the case for the previous chapters, first the architecture of the abstraction will
be discussed, followed by the implementation details and a discussion of the results to
conclude the chapter.

1. Architecture

A uniform reasoner interface should be designed to abstract away the differences be‐
tween the different reasoners. Doing so will not only allow developers to easily implement
reasoning in their applications without knowing all the internal details of the reasoner, but
it will also allow them to easily switch between reasoners as their use case changes.
Switching between reasoners can mean switching between reasoning in the browser or
remotely, or it can mean switching between reasoner implementations to improve perfor‐
mance. The interface should be designed in such a way that it is easy to implement for
the different reasoners, but also easy to use for the developers. It should reflect all the
possibilities of the reasoner, while still offering a uniform interface. In what follows, a pro‐
posal for such an interface will be discussed.

First, the data and query parameters are needed. The data parameter is used to
pass the data to the reasoner together with any inference rules that should be applied.
The query parameter is optional and defines the pattern of the data that should be re‐
turned by the reasoner. By leaving this parameter undefined, all inferred facts will be re‐
turned. The data and query can be passed as a string, or it can be passed as an array of
Quads. In the case of the latter, the Quad type of the RDF/JS library (@rdfjs/types) is
used when working in a JavaScript or TypeScript environment. When passed as a string,
the data should be formatted in the Notation3 syntax. Furthermore, the interface is de‐
signed with extensibility in mind. This is done by using a single object that contains all the
additional options that can be passed to the reasoner. This object can be extended by
other reasoners, allowing them to add their options. When a reasoner does not recognize
or support an option, it should inform the user of this. By default, the output type should
be the same as the input type. However, by passing the outputType option, the user
can specify the output type. This option must support at least the string value, which

will return the output as a string in the Notation3 syntax. It should also support the
quads value, which will return the output as an array of RDF/JS Quads.

When the query parameter is left undefined, the user should have the option to execute
implicit queries. This is expressed in the options object by the output option by defining
what to output with implicit queries. The default is undefined, meaning that no implicit
query is passed. The user can pass the derivations value to output only new derived
triples. The deductive_closure value can be passed to output the deductive closure.
To output the deductive closure plus the rules, the deductive_closure_plus_rules
value can be passed. Finally, the grounded_deductive_closure_plus_rules value
can be passed to ground the rules and output the deductive closure plus the rules.

Last, the option blogic can be defined to use blogic [58]. When true, the reasoner
should use blogic, used to support RDF Surfaces [59]. When false, the reasoner should
use the default reasoning algorithm. RDF Surfaces is a Notation3 sublanguage for repre‐
senting a collection of zero or more RDF graphs as a sheet of paper with those RDF
graphs on it. It is a language to express first-order logic in RDF that was proposed by
Hochstenbach and De Roo and for which support was added to EYE. It is an implementa‐
tion of the ideas of blogic by Hayes.

2. Implementation

2.1. Remote EYE Execution

At the time of starting this thesis, the EYE reasoner was not yet available as a
JavaScript library. The only way to execute reasoning queries was to use the command
line interface (CLI) of the EYE reasoner. To execute reasoning queries in the browser, the
queries were first sent to a server, where the EYE CLI was used to execute the query, and
the results were sent back to the browser. This was not ideal, as this heavily relies on a
server being available. This also brings the additional cost of doing an HTTP request to
the server, which would not be needed if the EYE reasoner could be executed in the
browser. As a first step in the right direction, an eye-mock library [60] was created that
provides a mock implementation of the EYE reasoner in the browser. It does this by inter‐
nally doing an HTTP request to a server running the EYE CLI, just like the previous imple‐
mentation. This library is just a wrapper around this HTTP request although the advantage
of wrapping it in a library is that it can be easily replaced with a real implementation of the
EYE reasoner in the browser. Because of that, it seems to the developer using the library
that the reasoning is executed client-side in the browser, while in reality, it is still executed
on the server. The goal of this EYE mock is to propose a standard interface for reasoning
libraries in the browser so that the implementation of the EYE reasoner in the browser can
be easily swapped with another reasoning library. Therefore, the interface as described in
the previous section was implemented in this library and is displayed in Listing 16. The ex‐
isting server implementation accepting HHTP requests by Van Woensel [61] was further
extended to support the new interface and then used as the server for the EYE mock li‐
brary. This extended version can be found at https://github.com/smessie/n3-editor-js.

https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/smessie/n3-editor-js
https://github.com/smessie/n3-editor-js

This server implementation expects the data and query to be passed as a string.
Furthermore, it will return the output as a string in the Notation3 syntax. The EYE mock li‐
brary supports the string and quads values for the outputType option. When the
quads value is passed, the output will be converted to an array of RDF/JS Quads. To do
so, the N3 parser of the N3.js library [32] is used, which is a JavaScript library for parsing
and serializing RDF in the Notation3 syntax. However, due to some limitations of the N3.js
library [62] where the Writer does not support N3, only passing the input data and query
as a string is currently supported.

2.2. EYE-JS

While working on this thesis with the earlier explained EYE mock, the EYE reasoner was
made available as a JavaScript library by Wright [30]. As described earlier in Subsection
3.6.2, this library uses the new technology of SWI-Prolog in the browser using WASM. As
a function of this thesis, the same uniform interface as the EYE mock was contributed to
the EYE-JS library. This allows easy switching between the EYE mock and the EYE-JS li‐
brary by just changing the import statement. This shows the power of the uniform inter‐
face and what is possible with it in the future if other reasoning libraries would follow the
same proposed standard.

2.3. Reasoner App

The Eye Reasoner app is a playground application that allows one to execute reasoning
queries over some data in the browser. The goal of this application is to research the fea‐
sibility of executing reasoning queries in the browser and to provide a simple interface to
do so. This application was implemented as a second application after the
FormGenerator. The outcome of this app was later used in the implementation of other
applications: the to-do app and the form renderer. In addition to testing out the capabili‐
ties of reasoning in the browser and overcoming perceived challenges, it also provides a
perfect tool for researchers and others engaged in reasoning to quickly and very easily run
queries on their data using the EYE reasoner. The Reasoner app supports both reasoning
via the browser via the EYE-JS library and reasoning via the server via the EYE mock li‐
brary. The user can use the toggle to switch between the two implementations to fit their

Listing 16:

import { Quad } from '@rdfjs/types';

export interface IQueryOptions {
blogic?: boolean;
outputType?: 'string' | 'quads'
output?: undefined | 'derivations' | 'deductive_closure' | 'deductive_closure_plus_rules

}

declare module "eye-mock" {
export function n3reasoner(data: Quad[] | string, query?: Quad[] | string | undefined

}

Implementation of the uniform reasoner interface of the EYE mock library.

needs. Executing the reasoning in the browser will not have the overhead of an HTTP re‐
quest to the server while executing the reasoning on the server will be able to execute
more complex queries that would otherwise not be possible in the browser by using the
full server resources.

The input data and query can be passed in the text area or by providing a URL to the
data and query. In the case of the latter, authentication, as discussed earlier in
Subsubsection 5.2.1.2, is implemented to allow the user to provide a URL to a private re‐
source in a Solid pod. A toggle to enable or disable the support for blogic reasoning is
also provided. This value is then passed along to the EYE reasoner. Because of this, this
playground application can also be used to test out RDF Surfaces.

3. Discussion

This chapter began with the expression of the desire to be able to easily switch be‐
tween different reasoning libraries by the use of a uniform interface. In Section 7.1 such an
interface was proposed which then was implemented as discussed in Section 7.2. Given
the successful implementation of this interface in the EYE mock and EYE-JS libraries, it is
now possible to easily switch between these two libraries. This is demonstrated in the
Reasoner app, where the user can switch between the two libraries by just clicking a tog‐
gle. As a developer, this switching between the 2 reasoners was extremely easy to imple‐
ment as the only thing that had to be changed was the import statement. This shows the
power of the uniform interface and what is possible with it in the future if other reasoning
libraries would follow the same proposed standard.

The posed question “How can an abstraction be made to run reasoning in the
browser or remotely?” can thus be successfully answered. The implementation of the pro‐
posed interface in the EYE mock and EYE-JS libraries shows how this abstraction can be
made. Furthermore, the implementation of the Reasoner app shows how this abstraction
can be used to run reasoning in the browser or remotely. The source code of this
Reasoner app can be found at https://github.com/smessie/reasoner-app and a live ver‐
sion of this application can be found at https://reasoner.smessie.com.

As future work, it would be interesting to see this interface implemented in other rea‐
soning libraries, especially in a library that implements a different algorithm than the EYE
reasoner. This would show if there are any shortcomings in the proposed interface and
would allow a developer to easily switch to another reasoner in the case that the EYE rea‐
soner would not perform well on their use case. As additional future work, it would be nice
to have an HTTP server version of the interface so that the interface can be used in a
server environment as well, without the need for an additional library like the EYE mock.
This interface should exist of the same parameters as the proposed interface in Section
7.1.

https://github.com/smessie/reasoner-app
https://github.com/smessie/reasoner-app
https://reasoner.smessie.com/
https://reasoner.smessie.com/

Chapter 8: Conclusion
We started in the introduction with the scenario where Alice tried to edit and reuse

Bob’s form to avoid having to build a new form from scratch or edit where the data is
stored. In addition, Bob wanted to be able to render the form with his favorite application,
regardless of which one Alice uses. However, they found themselves in a centralized and
strongly coupled network of service providers and their respective web interfaces. In this
thesis, an alternative decentralized and decoupled architecture is presented to solve Alice
and Bob’s problems. When Bob now sends a form to Alice, he will send the form descrip‐
tion to Alice, and Alice will be able to render the form in her own viewing environment.
Thanks to the declarativity of the form description, all semantics are contained in it, i.e.
the form description contains all the information needed to render the form and to decide
what to do with the submitted data. Alice’s form renderer is now able to render the form
without the need to make any assumptions. When Alice clicks the submit button, the form
renderer will perform the footprint tasks by executing the policies that are defined in the
form description. However, when Alice wants to send the data she entered somewhere
else, she can edit the form description and change the policies, after which she can then
use this updated form description to render the form again. This way, Alice has full control
over the form and the data she enters into it.

In the same way, Alice can now reuse Bob’s form description to create a new form that
is similar to his form, edit it to her needs, and then send it to Charlie. Alice saved a lot of
time by not having to build a new form from scratch. Furthermore, they can use the
FormRenderer implemented in this thesis to not only render the form but also to fill in the
form with pre-existing data. In the case that Charlie has already filled out Bob’s form, and
then Alice sends her form to Charlie, Charlie can use the FormRenderer to fill out Alice’s
form with the data he already entered in Bob’s form, and only need to fill in the data that is
different between the two forms.

By giving Alice the possibility to edit the form description, thus changing where the data
will be stored, and also supporting multiple viewing environments, the three-part architec‐
ture allows for decentralization and decoupling of web forms. However, we realized that
this move to decentralization and decoupling comes with its own challenges. Decoupling
also means that another app can be used to render the form, but the ability to use any
form renderer does not necessarily imply that that form renderer app will understand the
same ontology. Schema alignment tasks were proposed and implemented to be able to
translate a resource from one ontology to another. First, a to-do application was imple‐
mented to detail this technique. This makes the used ontology of the resource indepen‐
dent of the ontology used by the application, as long as both ontologies are similar
enough in the sense that they can be mapped to each other.

To prove that another app can be used to render the form, a FormCli app was imple‐
mented. Both are form renderer applications, but the FormRenderer is a web application
and the FormCli is a command-line application. This shows that the display part is not
bound to a specific viewing environment as this proved that the same form description

can be rendered both in a web browser using HTML and in a text-based terminal.

The implemented FormRenderer app implementing schema alignment and footprint
tasks got a lot of positive feedback from the user-experience evaluation. It seemed to be a
very intuitive form renderer, where the users did not notice that schema alignment was
happening in the background. The only thing that was noticed was that the people filling
in a SHACL form had no multi-line text field for the review description (because it is not
supported in SHACL), while they expected one instead of a single-line text field. Next to
that, the users that evaluated the FormGenerator app gave the feedback that the SHACL
way of defining if a field is required or if multiple values are allowed with “sh:minCount”
and “sh:maxCount” is not intuitive. This makes it clear that the SHACL ontology is not
ideal for the display part. It was stated earlier, but now it is also empirically shown that the
Solid-UI ontology is more natural for the display part. The FormRenderer can be used for
a lot of different simple use cases, but it is not yet ready for more complex use cases. This
is because it was built as a proof of concept where not all form elements are implemented
yet, just as is the case for the FormGenerator.

A proof of concept was also implemented for the footprint tasks. Notation3 proved to
be a viable option as a rule language, just as FnO proved to be a suitable ontology as a
policy language. The thesis showed that policies can be used to describe what should
happen in a given event, but no standardized way of defining such policies had been pro‐
posed. However, this should be a future work item. Furthermore, once such a policy is
standardized, it would be nice to have a policy-executor library that handles the ex‐
ecution of the policy, so that applications do not have to implement this themselves. This
would improve extensibility; new policies could be added in one place, the library, and all
applications using that library would automatically support the new policy by simply up‐
dating the library. This opens the door for more advanced policies, and also for more stan‐
dardized policies since the library could be used by many applications.

Implementing these policies with N3 showed that more work is needed regarding N3
rules. This insight was gained when it was discovered that N3 rules could not be patched
with N3 Patch, nor could they be patched with SPARQL Update. Furthermore, the
N3Parser cannot parse a resource that contains N3 rules (even though the library is called
N3.js, and N3 rules are part of the N3 specification). This is cumbersome and must be re‐
solved in order to make the use of N3 rules more convenient.

To execute the footprint tasks and the schema alignment tasks, reasoning was used.
First, the reasoning was done remotely on a server, but later the switch was made to
client-side reasoning in the browser, removing the need for a server. However, to allow
easy switching between the two, a uniform reasoner interface was implemented. This in‐
terface was implemented in the EYE-JS library and the EYE mock library, which is a pack‐
age around a remote execution of the EYE reasoner. A simple Reasoner application was
then implemented using these packages allowing to reason over a resource giving the
ability to easily switch between local and remote reasoning. This shows that such a uni‐

form reasoner interface is possible and can be used to switch easily between different
reasoners in the browser or remotely. As future work, it would be interesting to see this in‐
terface implemented in other reasoning libraries, especially in a library that implements a
different algorithm than the EYE reasoner. Additionally, it would be nice to have an HTTP
server version of the interface so that the interface can be used in a server environment as
well, without the need for an additional library.

Another point of feedback received from the user-experience evaluation was that the
users were confused by the bindings in the FormGenerator and did not fully understand
them. It would be nice to further abstract the bindings away from the user so that the user
does not have to think about them. This could be done by automatically generating and
suggesting the bindings based on what label the user enters for the field. This is beyond
the scope of this thesis but could be a topic for future research.

This thesis solved a large part of the problem to create a purely declarative way to cre‐
ate Solid web forms. The validation part was not extensively examined in this thesis.
Some existing work on validation was discussed, but no new work was done. For future
work, it could be interesting to implement the validation part in the different applications
as was proposed in the architecture and see the whole architecture in action.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bibliography

T. Berners-Lee and others, “Solid.” 2022. Accessed: Nov. 26, 2022. [Online]. Available:
https://solidproject.org

D. Arndt, W. Van Woensel, D. Tomaszuk, and G. Kellogg, “Notation3.” 2022.
Accessed: Nov. 26, 2022. [Online]. Available: https://w3c.github.io/N3/spec/

R. Verborgh, “Shaping Linked Data apps.” 2022. Accessed: Dec. 01, 2022. [Online].
Available: https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/

E. Bruchez, A. Couthures, and P. Steven, “XForms 2.0 - XForms Users Community
Group.” 2022. Accessed: Oct. 17, 2022. [Online]. Available: https://www.w3.org/com‐
munity/xformsusers/wiki/XForms_2.0

H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL).” 2022.
Accessed: Nov. 28, 2022. [Online]. Available: https://www.w3.org/TR/shacl/

SolidOS, “Solid-UI.” 2022. Accessed: Nov. 28, 2022. [Online]. Available:
https://www.w3.org/ns/ui#

P. Hochstenbach, J. Wright, and T. Turdean, “RDF forms for Solid.” Jul. 2022.
Accessed: May 24, 2023. [Online]. Available: https://solidos.solidcommunity.net/public
/2022/RDF%20forms%20for%20Solid/

I. Smessaert, “Google Forms but the Solid way.” Sep. 2022. Accessed: Nov. 28, 2022.
[Online]. Available: https://smessaert.be/blog/google-forms-but-the-solid-way/

D. Beeke, “RDF Form.” 2022. Accessed: Nov. 28, 2022. [Online]. Available: https://rdf-
form.danielbeeke.nl

M. Lanthaler and C. Gütl, “Hydra: A Vocabulary for Hypermedia-Driven Web APIs.,”
LDOW, vol. 996, pp. 35–38, 2013.

MetaSolutions, “RDForms - RDF in HTML-forms.” Accessed: May 08, 2023. [Online].
Available: https://rdforms.org/#!index.md

W. Slabbinck, “Interoperabiliteit tussen applicaties met behulp van Solid voor het be‐
heren van sensordata in slimme woningen /.” 2021. Available: https://lib.ugent.be/cata‐
log/rug01:003014963

E. Prud’hommeaux and J. Bingham, “Shape Trees Specification.” Dec. 2021.
Accessed: Apr. 20, 2023. [Online]. Available: https://shapetrees.org/TR/specification/

W. Slabbinck, “CommunitySolidServer/shape-validator-component.” Accessed: Apr.
20, 2023. [Online]. Available: https://github.com/CommunitySolidServer/shape-
validator-component

Zazuko, “rdf-validate-shacl.” zazuko, Feb. 2020. Accessed: Apr. 21, 2023. [Online].
Available: https://github.com/zazuko/rdf-validate-shacl

T. Bergwinkl, “shacl-engine.” rdf-ext, Jan. 2023. Accessed: Apr. 21, 2023. [Online].
Available: https://github.com/rdf-ext/shacl-engine

T. Bergwinkl, “Implementing a 15x faster JavaScript SHACL Engine,” bergis universe
of software, hardware and ideas. Mar. 2023. Accessed: Apr. 21, 2023. [Online].
Available: https://www.bergnet.org/2023/03/2023/shacl-engine/index.html

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific american,
vol. 284, no. 5, pp. 34–43, 2001.

https://solidproject.org/
https://solidproject.org/
https://w3c.github.io/N3/spec/
https://w3c.github.io/N3/spec/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://ruben.verborgh.org/blog/2019/06/17/shaping-linked-data-apps/
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://www.w3.org/ns/ui#
https://www.w3.org/ns/ui#
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://solidos.solidcommunity.net/public/2022/RDF%20forms%20for%20Solid/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://smessaert.be/blog/google-forms-but-the-solid-way/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdf-form.danielbeeke.nl/
https://rdforms.org/#!index.md
https://rdforms.org/#!index.md
https://lib.ugent.be/catalog/rug01:003014963
https://lib.ugent.be/catalog/rug01:003014963
https://lib.ugent.be/catalog/rug01:003014963
https://lib.ugent.be/catalog/rug01:003014963
https://shapetrees.org/TR/specification/
https://shapetrees.org/TR/specification/
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/CommunitySolidServer/shape-validator-component
https://github.com/zazuko/rdf-validate-shacl
https://github.com/zazuko/rdf-validate-shacl
https://github.com/rdf-ext/shacl-engine
https://github.com/rdf-ext/shacl-engine
https://www.bergnet.org/2023/03/2023/shacl-engine/index.html
https://www.bergnet.org/2023/03/2023/shacl-engine/index.html

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Berners-Lee, “Linked Data - Design Issues.” Jul. 2006. Accessed: May 22, 2023.
[Online]. Available: https://www.w3.org/DesignIssues/LinkedData.html

G. Schreiber and Y. Raimond, “RDF 1.1 Primer.” Jun. 2014. Accessed: May 22, 2023.
[Online]. Available: https://www.w3.org/TR/rdf11-primer/

D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “RDF 1.1 Turtle.”
Feb. 2014. Accessed: Nov. 28, 2022. [Online]. Available: https://www.w3.org/TR/turtle/

G. Kellogg, P.-A. Champin, D. Longley, M. Sporny, and M. Lanthaler, “JSON-LD 1.1.”
Jul. 2020. Accessed: May 22, 2023. [Online]. Available: https://www.w3.org/TR/json-ld/

F. Gandon and G. Schreiber, “RDF 1.1 XML Syntax.” Feb. 2014. Accessed: May 22,
2023. [Online]. Available: https://www.w3.org/TR/rdf-syntax-grammar/

I. Herman, B. Adida, M. Sporny, and M. Birbeck, “RDFa 1.1 Primer - Third Edition.”
Mar. 2015. Accessed: May 22, 2023. [Online]. Available: https://www.w3.org/TR/rdfa-
primer/

D. Beckett, “RDF 1.1 N-Triples.” Feb. 2014. Accessed: May 22, 2023. [Online].
Available: https://www.w3.org/TR/n-triples/

S. Harris and A. Seaborne, “SPARQL 1.1 Query Language.” Mar. 2013. Accessed:
May 22, 2023. [Online]. Available: https://www.w3.org/TR/2013/REC-sparql11-query-
20130321/

S. Capadisli, T. Berners-Lee, R. Verborgh, and K. Kjernsmo, “Solid Protocol.” 2022.
Accessed: Mar. 29, 2023. [Online]. Available: https://solidproject.org/TR/protocol

J. Halliday, “Tim Berners-Lee: Facebook could fragment web,” The Guardian, Nov.
2010, Accessed: May 23, 2023. [Online]. Available: https://www.theguardian.com
/technology/2010/nov/22/tim-berners-lee-facebook

R. Verborgh and J. De Roo, “Drawing Conclusions from Linked Data on the Web: The
EYE Reasoner.” 2022. Accessed: Oct. 20, 2022. [Online]. Available: http://ieeex‐
plore.ieee.org/document/7093047/

W. Jesse and J. De Roo, “EYE JS.” 2022. Accessed: Mar. 05, 2023. [Online].
Available: https://github.com/eyereasoner/eye-js

W. Van Woensel, “jen3.” 2022. Accessed: Mar. 05, 2023. [Online]. Available:
https://github.com/william-vw/jen3

R. Verborgh, “N3.js.” 2022. Accessed: Mar. 05, 2023. [Online]. Available:
https://github.com/rdfjs/N3.js

P. Bonte, “RoXi.” 2022. Accessed: Mar. 05, 2023. [Online]. Available:
https://github.com/pbonte/roxi

S. Ceri, G. Gottlob, L. Tanca, and others, “What you always wanted to know about
Datalog(and never dared to ask),” IEEE transactions on knowledge and data engineer‐
ing, vol. 1, no. 1, pp. 146–166, 1989.

J. Wielemaker, “SWI-Prolog in the browser using WASM - Wiki.” 2022. Accessed:
Nov. 28, 2022. [Online]. Available: https://swi-prolog.discourse.group/t/swi-prolog-in-
the-browser-using-wasm/5650

R. Taelman, J. Van Herwegen, M. Vander Sande, and R. Verborgh, “Comunica: a
Modular SPARQL Query Engine for the Web,” Oct. 2018. Available:
https://comunica.github.io/Article-ISWC2018-Resource/

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://solidproject.org/TR/protocol
https://solidproject.org/TR/protocol
https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
https://www.theguardian.com/technology/2010/nov/22/tim-berners-lee-facebook
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
http://ieeexplore.ieee.org/document/7093047/
https://github.com/eyereasoner/eye-js
https://github.com/eyereasoner/eye-js
https://github.com/william-vw/jen3
https://github.com/william-vw/jen3
https://github.com/rdfjs/N3.js
https://github.com/rdfjs/N3.js
https://github.com/pbonte/roxi
https://github.com/pbonte/roxi
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://swi-prolog.discourse.group/t/swi-prolog-in-the-browser-using-wasm/5650
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

R. Taelman, “Components.js.” Accessed: Mar. 29, 2023. [Online]. Available:
http://componentsjs.readthedocs.io/en/latest/

M. Fowler, “Inversion of Control Containers and the Dependency Injection pattern.”
Jan. 2004. Accessed: Mar. 29, 2023. [Online]. Available: https://martinfowler.com/arti‐
cles/injection.html

redpencil.io, “Ember Solid.” 2022. Accessed: Mar. 29, 2023. [Online]. Available:
https://github.com/redpencilio/ember-solid

Tilde, “Ember.js - A framework for ambitious web developers.” 2022. Accessed: Mar.
29, 2023. [Online]. Available: https://emberjs.com

Tilde, “Ember Data.” 2022. Accessed: Mar. 29, 2023. [Online]. Available:
https://guides.emberjs.com/release/models/

T. Berners-Lee, “rdflib.js.” 2011. Accessed: Mar. 29, 2023. [Online]. Available:
https://github.com/linkeddata/rdflib.js

B. De Meester, T. Seymoens, A. Dimou, and R. Verborgh, “Implementation-
independent function reuse,” Future Generation Computer Systems, vol. 110, pp.
946–959, 2020.

B. De Meester, A. Dimou, and F. Kleedorfer, “The Function Ontology.” 2021.
Accessed: Mar. 06, 2023. [Online]. Available: https://w3id.org/function/spec

A. Miles and S. Bechhofer, “SKOS simple knowledge organization system reference,”
W3C recommendation, 2009, Available: https://www.w3.org/TR/skos-reference/

M. Vander Sande, P. Hochstenbach, R. Dedecker, and J. Werbrouck, “Orchestrator
for a decentralized Web network.” 2021. Accessed: Mar. 06, 2023. [Online]. Available:
https://mellonscholarlycommunication.github.io/spec-orchestrator

P. Hochstenbach, “Koreografeye.” 2022. Accessed: Mar. 06, 2023. [Online].
Available: https://github.com/eyereasoner/Koreografeye

T. Berners-Lee, “Linked Data Shapes, Forms and Footprints - Design Issues.” Apr.
2019. Accessed: Apr. 15, 2023. [Online]. Available: https://www.w3.org/DesignIssues
/Footprints.html

D. Simonds, “Break down these walls,” The Economist, Mar. 2008, Accessed: May
09, 2023. [Online]. Available: https://www.economist.com/leaders/2008/03/19/break-
down-these-walls

Inrupt, “Session Restore upon Browser Refresh — Inrupt JavaScript Client
Libraries.” 2023. Accessed: Apr. 06, 2023. [Online]. Available: https://docs.inrupt.com
/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/

S. Boudrias, “SBoudrias/Inquirer.js: A collection of common interactive command
line user interfaces.,” GitHub. May 2013. Accessed: Mar. 27, 2023. [Online]. Available:
https://github.com/SBoudrias/Inquirer.js

A. Havermale, “haversnail/inquirer-date-prompt: A date prompt plugin for
Inquirer.js.,” GitHub. Jan. 2021. Accessed: Mar. 27, 2023. [Online]. Available:
https://github.com/haversnail/inquirer-date-prompt

Inrupt, “Authenticate (Node.js: Single-User App) — Inrupt JavaScript Client
Libraries.” Accessed: May 05, 2023. [Online]. Available: https://docs.inrupt.com
/developer-tools/javascript/client-libraries/tutorial/authenticate-nodejs-script/

http://componentsjs.readthedocs.io/en/latest/
http://componentsjs.readthedocs.io/en/latest/
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://github.com/redpencilio/ember-solid
https://github.com/redpencilio/ember-solid
https://emberjs.com/
https://emberjs.com/
https://guides.emberjs.com/release/models/
https://guides.emberjs.com/release/models/
https://github.com/linkeddata/rdflib.js
https://github.com/linkeddata/rdflib.js
https://w3id.org/function/spec
https://w3id.org/function/spec
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/skos-reference/
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://mellonscholarlycommunication.github.io/spec-orchestrator
https://github.com/eyereasoner/Koreografeye
https://github.com/eyereasoner/Koreografeye
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.w3.org/DesignIssues/Footprints.html
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://www.economist.com/leaders/2008/03/19/break-down-these-walls
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/restore-session-browser-refresh/
https://github.com/SBoudrias/Inquirer.js
https://github.com/SBoudrias/Inquirer.js
https://github.com/haversnail/inquirer-date-prompt
https://github.com/haversnail/inquirer-date-prompt
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/authenticate-nodejs-script/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/authenticate-nodejs-script/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/authenticate-nodejs-script/
https://docs.inrupt.com/developer-tools/javascript/client-libraries/tutorial/authenticate-nodejs-script/

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. Prass Martins, “Big integer literals are not available in the configured target envi‐
ronment (vite3 + vMoney3 + vue3).” 2022. Accessed: Apr. 06, 2023. [Online]. Available:
hhttps://github.com/jonathanpmartins/v-money3/issues/70#issuecomment-
1284503693

P. Gearon, A. Passant, and A. Polleres, “SPARQL 1.1 Update.” Mar. 2013. Accessed:
Dec. 12, 2022. [Online]. Available: https://www.w3.org/TR/sparql11-update/

M. Harris, “ember-drag-drop.” 2021. Accessed: Sep. 11, 2022. [Online]. Available:
https://github.com/mharris717/ember-drag-drop

P. Leach and M. Mealling, “A Universally Unique IDentifier (UUID) URN Namespace.”
Jul. 2015. Accessed: May 04, 2023. [Online]. Available: https://www.ietf.org
/rfc/rfc4122.txt

P. Hayes, “BLOGIC. (ISWC 2009 Invited Talk).” Oct. 2009. Accessed: May 12, 2023.
[Online]. Available: https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk

P. Hochstenbach and J. De Roo, “RDF Surfaces Primer.” 2023. Accessed: Apr. 06,
2023. [Online]. Available: https://w3c-cg.github.io/rdfsurfaces/

I. Smessaert, “eye-mock.” 2022. Accessed: Nov. 28, 2022. [Online]. Available:
https://github.com/smessie/eye-mock

W. Van Woensel, “william-vw/n3-editor-js: A Notation3 Editor in JavaScript.”
Accessed: Dec. 22, 2022. [Online]. Available: https://github.com/william-vw/n3-editor-js

J. Wright, J. De Roo, and R. Verborgh, “Writer does not support Notation3 · Issue
#316 · rdfjs/N3.js,” GitHub. Dec. 2022. Accessed: May 12, 2023. [Online]. Available:
https://github.com/rdfjs/N3.js/issues/316

https://github.com/jonathanpmartins/v-money3/issues/70#issuecomment-1284503693
https://github.com/jonathanpmartins/v-money3/issues/70#issuecomment-1284503693
https://github.com/jonathanpmartins/v-money3/issues/70#issuecomment-1284503693
https://github.com/jonathanpmartins/v-money3/issues/70#issuecomment-1284503693
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/
https://github.com/mharris717/ember-drag-drop
https://github.com/mharris717/ember-drag-drop
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.ietf.org/rfc/rfc4122.txt
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://www.slideshare.net/PatHayes/blogic-iswc-2009-invited-talk
https://w3c-cg.github.io/rdfsurfaces/
https://w3c-cg.github.io/rdfsurfaces/
https://github.com/smessie/eye-mock
https://github.com/smessie/eye-mock
https://github.com/william-vw/n3-editor-js
https://github.com/william-vw/n3-editor-js
https://github.com/rdfjs/N3.js/issues/316
https://github.com/rdfjs/N3.js/issues/316

Appendices

A. User Experience Scenarios

The following scenarios were given to the participants to measure the user experience
of the implemented applications. They explain how the participants should use the appli‐
cations and what they should do.

A.1. Scenario 1: The Form Generator

You have a restaurant and you would like to offer customers the opportunity to leave a
review on the dishes they have eaten. To do this, you create a form where the cus‐
tomer can enter the name of the dish along with the date of visit. The review consists
of a score between 1 and 3 (1★ - I didn’t like it, 2★★ - It was tasty or 3★★★ - It was
excellent). In addition, provide an option to substantiate their choice.

At the top right, it is free to choose between SHACL, Solid-UI and RDF-Form. This has
no further importance in the construction of the form.

Since Linked Data is being used in the background, each field and also the form itself
must contain a binding to link everything to existing data. This is done through the
binding field. Below is a list of existing bindings that can be used.

• schema:Rating or http://schema.org/Rating
• dc:title or http://purl.org/dc/elements/1.1/title
• schema:ratingExplanation or http://schema.org/ratingExplanation
• schema:ratingValue or http://schema.org/ratingValue
• ex:NotLikedIt or http://example.org/NotLikedIt
• ex:LikedIt or http://example.org/LikedIt
• ex:LovedIt or http://example.org/LovedIt
• schema:orderDate or http://schema.org/orderDate

After the customer saves the review you want an HTTP request of type PUT to be sent
to https://solid.smessie.com/thesis/forms/antwoord-x.ttl, for this the text/turtle
Content-Type is used. Finally, you also want to redirect the customer to a website of
your choice after completing the form.

A.2. Scenario 2: The Form Renderer

You went to eat at a restaurant where they asked you to leave a review about the dish
you ate. In the form, enter a review about a dish of your choice (e.g., what you ate to‐
day or yesterday). Then submit the form by choosing a subject URI of your choice for
the data.

B. Schema Alignment Example

B.1. Form Description in SHACL

@base <https://solid.smessie.com/thesis/forms/description-2.n3> .
@prefix shacl: <http://www.w3.org/ns/shacl#> .
@prefix ex: <http://example.org/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix mu: <http://mu.semte.ch/vocabularies/ext/listNodes/> .
@prefix schema: <http://schema.org/> .

<#242ca810-0b3e-4112-8144-934ebb1779dc> a shacl:NodeShape;
shacl:targetClass schema:Rating;
shacl:property <#41b9c368-2b2d-4bf1-94b9-679a93297103>, <#f9cc6fbd-e844-4588-b3bd-c45a63acac0

<#41b9c368-2b2d-4bf1-94b9-679a93297103> a shacl:PropertyShape;
shacl:datatype xsd:string;
shacl:path <http://purl.org/dc/elements/1.1/:title>;
shacl:order 0;
shacl:name "Name of the meal";
shacl:minCount 1;
shacl:maxCount 1.

<#f9cc6fbd-e844-4588-b3bd-c45a63acac03> a shacl:PropertyShape;
shacl:datatype xsd:date;
shacl:path schema:orderDate;
shacl:order 1;
shacl:name "Date of your visit";
shacl:minCount 1;
shacl:maxCount 1.

<#69c1cf77-4a0b-4951-a374-4612d113dade> a shacl:PropertyShape;
shacl:path schema:ratingValue;
shacl:order 2;
shacl:name "Rating";
shacl:minCount 1;
shacl:maxCount 1;
shacl:nodeKind shacl:IRI;
shacl:in mu:be809b07-3ded-4a91-be53-2b923d565d5c.

<#7267c9f3-5d1d-4621-8f83-027931bf1072> a shacl:PropertyShape;
shacl:datatype xsd:string;
shacl:path schema:ratingExplanation;
shacl:order 3;
shacl:name "Argumentation";
shacl:minCount 0;
shacl:maxCount 1.

ex:NotLikedIt a owl:Class;
rdfs:label "I didn’t like it".

ex:LikedIt a owl:Class;
rdfs:label "It was tasty".

ex:LovedIt a owl:Class;
rdfs:label "It was excellent".

mu:be809b07-3ded-4a91-be53-2b923d565d5c rdf:rest mu:3900b524-272e-44ae-89c6-09796e708780
rdf:first ex:NotLikedIt.

mu:3900b524-272e-44ae-89c6-09796e708780 rdf:rest mu:e81a19ad-5493-4781-86a4-66be00e1f728
rdf:first ex:LikedIt.

mu:e81a19ad-5493-4781-86a4-66be00e1f728 rdf:rest rdf:nil;
rdf:first ex:LovedIt.

B.2. N3 Rules to Map SHACL to Solid-UI

@prefix shacl: <http://www.w3.org/ns/shacl#>.
@prefix ui: <http://www.w3.org/ns/ui#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix math: <http://www.w3.org/2000/10/swap/math#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix list: <http://www.w3.org/2000/10/swap/list#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix string: <http://www.w3.org/2000/10/swap/string#> .

{
?uri a shacl:NodeShape;

shacl:targetClass ?binding.
} => {

?uri a ui:Form;
ui:property ?binding;

}.

{
?uri a shacl:NodeShape .
(?field { ?uri shacl:property ?field } ?List) log:collectAllIn _:x .

} => {
?uri ui:parts ?List .

}.

{
?uri a shacl:PropertyShape;

shacl:datatype xsd:date;
shacl:path ?binding.

} => {
?uri a ui:DateField;

ui:property ?binding.
}.

{
?uri a shacl:PropertyShape;

shacl:datatype xsd:boolean;
shacl:path ?binding.

} => {
?uri a ui:BooleanField;

ui:property ?binding.
}.

{
?uri a shacl:PropertyShape;

shacl:nodeKind shacl:IRI;
shacl:path ?binding.

} => {
?uri a ui:Choice;

ui:property ?binding.
}.

{
?uri a shacl:PropertyShape;

shacl:datatype xsd:string;
shacl:path ?binding.

} => {
?uri a ui:SingleLineTextField;

ui:property ?binding.
}.

{
?uri shacl:order ?order.

} => {
?uri ui:sequence ?order.

}.

{
?uri shacl:name ?name.

} => {
?uri ui:label ?name.

}.

{
?uri shacl:minCount ?minCount.
?minCount math:greaterThan 0.

} => {
?uri ui:required true.

}.

{
?uri shacl:maxCount ?maxCount.
?maxCount math:greaterThan 1.

} => {

?uri ui:multiple true.
}.

{
?uri a shacl:PropertyShape;

shacl:nodeKind shacl:IRI;
shacl:in ?options.

?options list:iterate (?i ?option) .
?option rdfs:label ?label .
?uri log:uri ?uriString .
(?uriString "-options") string:concatenation ?optionsUriString .
?optionsUri log:uri ?optionsUriString .

} => {
?uri ui:from ?optionsUri .
?optionsUri a owl:Class .
?option a ?optionsUri ;

skos:prefLabel ?label .
} .

B.3. Resulting Solid-UI Form Description

@base <https://solid.smessie.com/thesis/forms/description-2.n3> .
@prefix ex: <http://example.org/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix ui: <http://www.w3.org/ns/ui#>.
@prefix skos: <http://www.w3.org/2004/02/skos/core#>.
@prefix schema: <http://schema.org/> .

<#242ca810-0b3e-4112-8144-934ebb1779dc> a ui:Form ;
ui:property schema:Rating ;
ui:parts (<#41b9c368-2b2d-4bf1-94b9-679a93297103> <#f9cc6fbd-e844-4588-b3bd-c45a63acac03>

<#41b9c368-2b2d-4bf1-94b9-679a93297103> a ui:SingleLineTextField ;
ui:property <http://purl.org/dc/elements/1.1/:title> ;
ui:sequence 0 ;
ui:label "Name of the meal" ;
ui:required true.

<#f9cc6fbd-e844-4588-b3bd-c45a63acac03> a ui:DateField ;
ui:property schema:orderDate ;
ui:sequence 1 ;
ui:label "Date of your visit" ;
ui:required true.

<#69c1cf77-4a0b-4951-a374-4612d113dade> a ui:Choice ;
ui:property schema:ratingValue ;
ui:sequence 2 ;
ui:label "Rating" ;
ui:required true ;
ui:from <#69c1cf77-4a0b-4951-a374-4612d113dade-options>.

<#7267c9f3-5d1d-4621-8f83-027931bf1072> a ui:SingleLineTextField ;
ui:property schema:ratingExplanation ;
ui:sequence 3 ;
ui:label "Argumentation".

<#69c1cf77-4a0b-4951-a374-4612d113dade-options> a owl:Class.

ex:NotLikedIt a <#69c1cf77-4a0b-4951-a374-4612d113dade-options> ;
skos:prefLabel "I didn’t like it".

ex:LikedIt a <#69c1cf77-4a0b-4951-a374-4612d113dade-options> ;
skos:prefLabel "It was tasty".

ex:LovedIt a <#69c1cf77-4a0b-4951-a374-4612d113dade-options> ;
skos:prefLabel "It was excellent".

